/** racing module: implements the racing physics and logic. */ #ifndef _LCR_RACING_H #define _LCR_RACING_H typedef int32_t LCR_GameUnit; ///< abstract game unit #define LCR_GAME_UNIT 1024 ///< length of map square in LCR_GameUnits #define LCR_RACING_INPUT_FORW 0x01 #define LCR_RACING_INPUT_RIGHT 0x02 #define LCR_RACING_INPUT_BACK 0x04 #define LCR_RACING_INPUT_LEFT 0x08 #define LCR_PHYSICS_UNIT 512 ///< length of map square for physics engine #include "map.h" #include "tinyphysicsengine.h" #define LCR_CAR_JOINTS 5 #define LCR_CAR_CONNECTIONS 10 #define LCR_CAR_FORWARD_FRICTION (TPE_F / 14) #define LCR_CAR_TURN_FRICTION (3 * TPE_F / 4) #define LCR_CAR_ELASTICITY (TPE_F / 100) struct { TPE_World physicsWorld; TPE_Body carBody; TPE_Joint carJoints[LCR_CAR_JOINTS]; TPE_Connection carConnections[LCR_CAR_CONNECTIONS]; uint8_t wheelCollisions; /**< In individual bits records for each car wheel whether it's currently touching the ground. Lower bits record current collisions, higher bits the previous state (for averaging). */ TPE_Vec3 carPositions[2]; ///* Current and previous position. } LCR_racing; TPE_Vec3 _LCR_TPE_vec3DividePlain(TPE_Vec3 v, TPE_Unit d) { v.x /= d; v.y /= d; v.z /= d; return v; } TPE_Vec3 _LCR_racingEnvironmentFunction(TPE_Vec3 point, TPE_Unit maxDist) { return TPE_envAABoxInside(point,TPE_vec3(0,0,0),TPE_vec3( LCR_PHYSICS_UNIT * LCR_MAP_SIZE_BLOCKS, (LCR_PHYSICS_UNIT * LCR_MAP_SIZE_BLOCKS) / 2, LCR_PHYSICS_UNIT * LCR_MAP_SIZE_BLOCKS)); } uint8_t _LCR_racingCollisionHandler(uint16_t b1, uint16_t j1, uint16_t b2, uint16_t j2, TPE_Vec3 p) { // check which wheels are touching the ground. if (j1 < 4) // wheel joint? LCR_racing.wheelCollisions |= 0x01 << j1; return 1; } /** Initializes new run. */ void LCR_racingRestart(void) { LCR_racing.wheelCollisions = 0; TPE_bodyDeactivate(&(LCR_racing.carBody)); // TODO } /** Initializes the racing module, only call once. */ void LCR_racingInit(void) { LCR_log("initializing racing engine"); // make the car body: TPE_makeCenterRectFull(LCR_racing.carJoints, LCR_racing.carConnections, LCR_PHYSICS_UNIT / 2, (LCR_PHYSICS_UNIT * 3) / 4, LCR_PHYSICS_UNIT / 8); LCR_racing.carJoints[4].position.y += LCR_PHYSICS_UNIT / 6; LCR_racing.carJoints[4].sizeDivided *= 3; LCR_racing.carJoints[4].sizeDivided /= 2; TPE_bodyInit(&(LCR_racing.carBody), LCR_racing.carJoints,LCR_CAR_JOINTS, LCR_racing.carConnections,LCR_CAR_CONNECTIONS, TPE_F); LCR_racing.carBody.friction = LCR_CAR_FORWARD_FRICTION; LCR_racing.carBody.elasticity = LCR_CAR_ELASTICITY; TPE_worldInit(&(LCR_racing.physicsWorld), &(LCR_racing.carBody),1,_LCR_racingEnvironmentFunction); LCR_racing.physicsWorld.collisionCallback = _LCR_racingCollisionHandler; LCR_racingRestart(); } void LCR_racingGetCarTransform(LCR_GameUnit position[3], LCR_GameUnit rotation[3], LCR_GameUnit interpolationParam) { #if LCR_SETTING_SMOOTH_ANIMATIONS TPE_Vec3 v = TPE_vec3Plus( LCR_racing.carPositions[1], _LCR_TPE_vec3DividePlain( TPE_vec3TimesPlain( TPE_vec3Minus( LCR_racing.carPositions[0],LCR_racing.carPositions[1]), interpolationParam),LCR_GAME_UNIT)); position[0] = v.x; position[1] = v.y; position[2] = v.z; #else TPE_Vec3 v; position[0] = LCR_racing.carPositions[0].x; position[1] = LCR_racing.carPositions[0].y; position[2] = LCR_racing.carPositions[0].z; #endif v = TPE_bodyGetRotation(&(LCR_racing.carBody),0,2,1); rotation[0] = (v.x * LCR_GAME_UNIT) / TPE_F; rotation[1] = (v.y * LCR_GAME_UNIT) / TPE_F; rotation[2] = (v.z * LCR_GAME_UNIT) / TPE_F; // TODO: also smooth out rotation? } void _LCR_drawPhysicsDebugPixel(uint16_t x, uint16_t y, uint8_t color) { if (x > 1 && x < LCR_EFFECTIVE_RESOLUTION_X - 2 && y > 1 && y < LCR_EFFECTIVE_RESOLUTION_Y - 2) { uint16_t c = 0x8101 | (0x8f1f << (2 * color)); for (int j = -1; j <= 2; ++j) for (int i = -1; i <= 2; ++i) LCR_drawPixelXYUnsafe(x + i,y + j,c); } } int LCR_racingCarWheelTouchesGround(int wheel) { return ((LCR_racing.wheelCollisions & (LCR_racing.wheelCollisions >> 4)) >> wheel) & 0x01; } void LCR_racingStep(unsigned int input) { TPE_Vec3 carForw, carRight, carUp; TPE_Vec3 vel = TPE_vec3(0,0,0); if (input) { if (input & LCR_RACING_INPUT_FORW) vel.y = LCR_PHYSICS_UNIT / 8; if (input & LCR_RACING_INPUT_BACK) vel.z = LCR_PHYSICS_UNIT / 32; if (input & LCR_RACING_INPUT_RIGHT) vel.x = LCR_PHYSICS_UNIT / 32; if (input & LCR_RACING_INPUT_LEFT) vel.x = -1 * LCR_PHYSICS_UNIT / 32; TPE_bodyAccelerate(&(LCR_racing.carBody),vel); } TPE_bodyApplyGravity(&(LCR_racing.carBody), TPE_F / 32 ); LCR_racing.wheelCollisions <<= 4; TPE_worldStep(&(LCR_racing.physicsWorld)); carForw = TPE_vec3Normalized(TPE_vec3Plus( TPE_vec3Minus(LCR_racing.carBody.joints[2].position, LCR_racing.carBody.joints[0].position), TPE_vec3Minus(LCR_racing.carBody.joints[3].position, LCR_racing.carBody.joints[1].position))); carRight = TPE_vec3Normalized(TPE_vec3Plus( TPE_vec3Minus(LCR_racing.carBody.joints[1].position, LCR_racing.carBody.joints[0].position), TPE_vec3Minus(LCR_racing.carBody.joints[3].position, LCR_racing.carBody.joints[2].position))); carUp = TPE_vec3Cross(carForw,carRight); if (TPE_vec3Dot(carUp,TPE_vec3Minus(LCR_racing.carBody.joints[4].position, LCR_racing.carBody.joints[0].position)) < 0) { /* if the car falls on its roof the center joint may flip to the other side, here we fix it */ // LCR_log("car flipped over, fixing"); LCR_racing.carBody.joints[4].position = TPE_vec3Plus(TPE_vec3Times(carUp, LCR_GAME_UNIT / 4),LCR_racing.carBody.joints[4].position); } LCR_racing.carPositions[1] = LCR_racing.carPositions[0]; #define AVERAGE(c) \ (((((LCR_racing.carBody.joints[0].position.c + \ LCR_racing.carBody.joints[1].position.c + \ LCR_racing.carBody.joints[2].position.c + \ LCR_racing.carBody.joints[3].position.c) / 4) + \ LCR_racing.carBody.joints[4].position.c) / 2) * \ LCR_GAME_UNIT) / LCR_PHYSICS_UNIT LCR_racing.carPositions[0].x = AVERAGE(x); LCR_racing.carPositions[0].y = AVERAGE(y); LCR_racing.carPositions[0].z = AVERAGE(z); #undef AVERAGE } void LCR_physicsDebugDraw(LCR_GameUnit camPos[3], LCR_GameUnit camRot[2], LCR_GameUnit camFov) { TPE_Vec3 cPos, cRot, cView; cPos.x = (camPos[0] * LCR_PHYSICS_UNIT) / LCR_GAME_UNIT; cPos.y = (camPos[1] * LCR_PHYSICS_UNIT) / LCR_GAME_UNIT; cPos.z = (camPos[2] * LCR_PHYSICS_UNIT) / LCR_GAME_UNIT; cRot.x = (camRot[0] * TPE_F) / LCR_GAME_UNIT; cRot.y = (camRot[1] * TPE_F) / LCR_GAME_UNIT; cRot.z = 0; cView.x = LCR_EFFECTIVE_RESOLUTION_X; cView.y = LCR_EFFECTIVE_RESOLUTION_Y; cView.z = (camFov * TPE_F) / LCR_GAME_UNIT; TPE_worldDebugDraw(&(LCR_racing.physicsWorld),_LCR_drawPhysicsDebugPixel, cPos,cRot,cView,16,2 * LCR_PHYSICS_UNIT); } #endif // guard