Licar/renderer.h
2024-08-02 00:05:03 +02:00

763 lines
21 KiB
C

/**
3D renderer: implements 3D rendering.
*/
#ifndef _LCR_RENDERER_H
#define _LCR_RENDERER_H
#define S3L_RESOLUTION_X LCR_SETTING_RESOLUTION_X
#define S3L_RESOLUTION_Y LCR_SETTING_RESOLUTION_Y
#define S3L_PIXEL_FUNCTION LCR_pixelFunc3D
#define S3L_PERSPECTIVE_CORRECTION 2
#define S3L_NEAR_CROSS_STRATEGY 0
#define S3L_Z_BUFFER 1
#include "small3dlib.h"
/// Renderer specific unit, length of one map square.
#define LCR_RENDERER_UNIT S3L_FRACTIONS_PER_UNIT
struct
{
S3L_Scene scene3D;
S3L_Model3D models3D[3]; // TODO
S3L_Model3D *mapModel;
S3L_Unit mapVertices[LCR_SETTING_MAX_MAP_VERTICES * 3];
S3L_Index mapTriangles[LCR_SETTING_MAX_MAP_TRIANGLES * 3];
/**
Additional data for triangles. 4 higher bits hold direction (for lighting):
0 is floor, 1 is wall, 2 is wall (90 degrees). 4 lower bits hold the
texture index.
*/
uint8_t mapTriangleData[LCR_SETTING_MAX_MAP_TRIANGLES];
// pixel function precomputed values:
int previousTriangleID;
int triangleUVs[6];
} LCR_renderer;
void LCR_pixelFunc3D(S3L_PixelInfo *pixel)
{
// once we get a new triangle, we precompute things for it:
if (pixel->triangleIndex != LCR_renderer.previousTriangleID)
{
S3L_Index *t = LCR_renderer.mapTriangles + 3 * pixel->triangleIndex;
S3L_Unit *v[3];
for (int i = 0; i < 3; ++i)
v[i] = LCR_renderer.mapVertices + 3 * t[i];
uint8_t type = LCR_renderer.mapTriangleData[pixel->triangleID] >> 4;
LCR_loadImage(LCR_renderer.mapTriangleData[pixel->triangleID] & 0x0f);
if (type == 0) // floor?
{
if (v[0][1] != v[1][1] || v[1][1] != v[2][1]) // angled floor?
LCR_imageChangeBrightness(1);
for (int i = 0; i < 6; ++i)
LCR_renderer.triangleUVs[i] = ((
(v[i / 2][(i % 2) * 2]) *
LCR_IMAGE_SIZE) / LCR_RENDERER_UNIT);
}
else
{
if (type == 1)
LCR_imageChangeBrightness(0);
for (int i = 0; i < 6; ++i)
{
LCR_renderer.triangleUVs[i] = ((
(v[i / 2][i % 2 ? 1 : (type == 1 ? 2 : 0)]) *
LCR_IMAGE_SIZE) / LCR_RENDERER_UNIT);
if (i % 2)
LCR_renderer.triangleUVs[i] = LCR_IMAGE_SIZE -
LCR_renderer.triangleUVs[i];
}
}
// shift the UVs to the origin (prevent high values of UV coords)
for (int i = 0; i < 2; ++i)
{
uint8_t minCoord = LCR_renderer.triangleUVs[i] <
LCR_renderer.triangleUVs[2 + i] ? (0 + i) : (2 + i);
if (LCR_renderer.triangleUVs[4 + i] < LCR_renderer.triangleUVs[minCoord])
minCoord = 4 + i;
S3L_Unit shiftBy = LCR_renderer.triangleUVs[minCoord] % LCR_IMAGE_SIZE;
if (shiftBy < 0)
shiftBy += LCR_IMAGE_SIZE;
shiftBy -= LCR_renderer.triangleUVs[minCoord];
LCR_renderer.triangleUVs[i] += shiftBy;
LCR_renderer.triangleUVs[2 + i] += shiftBy;
LCR_renderer.triangleUVs[4 + i] += shiftBy;
}
LCR_renderer.previousTriangleID = pixel->triangleIndex;
}
int barycentric[3];
barycentric[0] = pixel->barycentric[0] / 8;
barycentric[1] = pixel->barycentric[1] / 8;
barycentric[2] = pixel->barycentric[2] / 8;
uint16_t color = LCR_sampleImage(
(barycentric[0] * LCR_renderer.triangleUVs[0] +
barycentric[1] * LCR_renderer.triangleUVs[2] +
barycentric[2] * LCR_renderer.triangleUVs[4])
/ (S3L_FRACTIONS_PER_UNIT / 8),
(barycentric[0] * LCR_renderer.triangleUVs[1] +
barycentric[1] * LCR_renderer.triangleUVs[3] +
barycentric[2] * LCR_renderer.triangleUVs[5])
/ (S3L_FRACTIONS_PER_UNIT / 8)
);
LCR_drawPixelXYUnsafe(pixel->x,pixel->y,color);
}
S3L_Index _LCR_addMapVertex(S3L_Unit x, S3L_Unit y, S3L_Unit z)
{
S3L_Index index = 0;
S3L_Unit *vertices = LCR_renderer.mapVertices;
while (index < LCR_renderer.mapModel->vertexCount) // if exists, return vertex index
{
if (vertices[0] == x && vertices[1] == y && vertices[2] == z)
return index;
vertices += 3;
index++;
}
// if it doesn't exist, add it
if (LCR_renderer.mapModel->vertexCount < LCR_SETTING_MAX_MAP_VERTICES)
{
*vertices = x; vertices++;
*vertices = y; vertices++;
*vertices = z;
LCR_renderer.mapModel->vertexCount++;
return LCR_renderer.mapModel->vertexCount - 1;
}
LCR_log("couldn't add map vertex!");
return 0;
}
void _LCR_addMapTriangle(S3L_Index a, S3L_Index b, S3L_Index c, uint8_t mat)
{
if (LCR_renderer.mapModel->triangleCount < LCR_SETTING_MAX_MAP_TRIANGLES)
{
S3L_Index *t =
&(LCR_renderer.mapTriangles[LCR_renderer.mapModel->triangleCount * 3]);
*t = a; t++;
*t = b; t++;
*t = c;
LCR_renderer.mapTriangleData[LCR_renderer.mapModel->triangleCount] =
mat;
LCR_renderer.mapModel->triangleCount++;
}
}
void _LCR_rendererSwapMapTriangles(unsigned int index1, unsigned int index2)
{
uint8_t tmpMat;
S3L_Index tmpIndex,
*t1 = LCR_renderer.mapTriangles + index1 * 3,
*t2 = LCR_renderer.mapTriangles + index2 * 3;
for (int i = 0; i < 3; ++i)
{
tmpIndex = t1[i];
t1[i] = t2[i];
t2[i] = tmpIndex;
}
tmpMat = LCR_renderer.mapTriangleData[index1];
LCR_renderer.mapTriangleData[index1] =
LCR_renderer.mapTriangleData[index2];
LCR_renderer.mapTriangleData[index2] = tmpMat;
}
int _LCR_quadCoversTriangle(const S3L_Unit quad[8], const S3L_Unit tri[6])
{
for (int i = 0; i < 3; ++i) // for each triangle point
{
int covered = 0;
for (int j = 0; j < 3; ++j) // for each quad subtriangle
{
uint8_t winds = 0;
for (int k = 0; k < 3; ++k) // for each subtriangle side
{
S3L_Unit w = // triangle winding
(quad[(2 * (j + ((k + 1) % 3))) % 8 + 1] -
quad[(2 * (j + k)) % 8 + 1]) *
(tri[2 * i] - quad[(2 * (j + (k + 1) % 3)) % 8]) -
(quad[(2 * (j + ((k + 1) % 3))) % 8] - quad[(2 * (j + k)) % 8])
* (tri[2 * i + 1] - quad[(2 * (j + (k + 1) % 3)) % 8 + 1]);
if (w > 0)
winds |= 1;
else if (w < 0)
winds |= 2;
}
if (winds != 3) // no opposite winds?
{
covered = 1;
break;
}
}
if (!covered)
return 0;
}
return 1;
}
/**
Checks whether two triangles (and potenrially their neighbors) cover each
other, in return values lowest bit means whether t1 is covered and the second
lowest bit means whether t2 is covered.
*/
uint8_t _LCR_rendererCheckMapTriangleCover(const S3L_Index *t1,
const S3L_Index *t2)
{
if ((t1[0] == t2[0] || t1[0] == t2[1] || t1[0] == t2[2]) &&
(t1[1] == t2[0] || t1[1] == t2[1] || t1[1] == t2[2]) &&
(t1[2] == t2[0] || t1[2] == t2[1] || t1[2] == t2[2]))
return 0x03;
uint8_t result = 0;
int plane = -1;
S3L_Unit *vertices[6];
for (int i = 0; i < 3; ++i)
{
vertices[i] = LCR_renderer.mapVertices + 3 * t1[i];
vertices[3 + i] = LCR_renderer.mapVertices + 3 * t2[i];
}
for (int i = 0; i < 3; ++i)
if (vertices[0][i] == vertices[1][i] && vertices[1][i] == vertices[2][i] &&
vertices[2][i] == vertices[3][i] && vertices[3][i] == vertices[4][i] &&
vertices[4][i] == vertices[5][i])
{
plane = i;
break;
}
if (plane >= 0) // both triangles in the same plane => then do more checks
{
for (int j = 0; j < 2; ++j)
{
S3L_Unit points2D[14]; // tri1, quad (tri2 + 1 extra vert)
int coordX = plane == 0 ? 1 : 0,
coordY = plane == 2 ? 1 : 2;
for (int i = 0; i < 3; ++i)
{
points2D[i * 2] = vertices[i][coordX];
points2D[i * 2 + 1] = vertices[i][coordY];
points2D[6 + i * 2] = vertices[3 + i][coordX];
points2D[6 + i * 2 + 1] = vertices[3 + i][coordY];
}
points2D[12] = (4 * points2D[6] + 3 * points2D[8] + points2D[10]) / 8;
points2D[13] = (4 * points2D[7] + 3 * points2D[9] + points2D[11]) / 8;
// first: does the triangle alone cover the other one?
if (_LCR_quadCoversTriangle(points2D + 6,points2D))
result |= 1 << j;
else
{
// now check if this triangle along with a neighbor cover the other one
S3L_Index *t3 = LCR_renderer.mapTriangles;
for (int i = 0; i < LCR_renderer.mapModel->triangleCount; ++i)
{
uint8_t sharedVerts =
(t3[0] == t2[0] || t3[0] == t2[1] || t3[0] == t2[2]) |
((t3[1] == t2[0] || t3[1] == t2[1] || t3[1] == t2[2]) << 1) |
((t3[2] == t2[0] || t3[2] == t2[1] || t3[2] == t2[2]) << 2);
if (
t3 != t1 && t3 != t2 &&
(sharedVerts == 3 || sharedVerts == 5 || sharedVerts == 6) &&
LCR_renderer.mapVertices[3 * t3[0] + plane] ==
LCR_renderer.mapVertices[3 * t3[1] + plane] &&
LCR_renderer.mapVertices[3 * t3[1] + plane] ==
LCR_renderer.mapVertices[3 * t3[2] + plane] &&
LCR_renderer.mapVertices[3 * t3[0] + plane] ==
LCR_renderer.mapVertices[3 * t1[0] + plane]
)
{
// here shares exactly two vertices and is in the same plane
uint8_t freeVert =
sharedVerts == 3 ? 2 : (sharedVerts == 5 ? 1 : 0);
points2D[12] = LCR_renderer.mapVertices[3 * t3[freeVert] + coordX];
points2D[13] = LCR_renderer.mapVertices[3 * t3[freeVert] + coordY];
if (_LCR_quadCoversTriangle(points2D + 6,points2D))
{
result |= 1 << j;
break;
}
}
t3 += 3;
}
}
// now swap both triangles and do it all again:
const S3L_Index *tmp = t1;
t1 = t2;
t2 = tmp;
for (int i = 0; i < 3; ++i)
{
S3L_Unit *tmpCoord = vertices[i];
vertices[i] = vertices[3 + i];
vertices[3 + i] = tmpCoord;
}
}
}
return result;
}
/**
Removes map triangles that are covered by other triangles (and also vertices
that by this become unused). This makes the map model smaller, faster and
prevents bleeding through due to z-bugger imprecisions.
*/
void _LCR_rendererCullHiddenMapTriangles(void)
{
LCR_log("culling invisible triangles");
int n = 0; // number of removed elements
int i = 0;
S3L_Index *t1 = LCR_renderer.mapTriangles, *t2;
/*
We'll be moving the covered triangles to the end of the array, then at the
end we'll just shorten the array by number of removed triangles.
*/
while (i < LCR_renderer.mapModel->triangleCount - n)
{
t2 = t1 + 3; // t2 is the the other triangle against which we check
int t1Covered = 0;
for (int j = i + 1; j < LCR_renderer.mapModel->triangleCount; ++j)
{
uint8_t cover = _LCR_rendererCheckMapTriangleCover(t1,t2);
t1Covered |= cover & 0x01;
if (cover & 0x02)
{
if (j < LCR_renderer.mapModel->triangleCount - n)
{
_LCR_rendererSwapMapTriangles(j,
LCR_renderer.mapModel->triangleCount - 1 - n);
n++;
}
}
t2 += 3; // check next triangle
}
if (t1Covered)
{
_LCR_rendererSwapMapTriangles(i,
LCR_renderer.mapModel->triangleCount - 1 - n);
n++;
// we stay at this position because we've swapped the triangle here
}
else
{
t1 += 3;
i++;
}
}
LCR_renderer.mapModel->triangleCount -= n; // cut off the removed triangles
// remove unused vertices:
i = 0;
while (i < LCR_renderer.mapModel->vertexCount)
{
int used = 0;
for (int j = 0; j < LCR_renderer.mapModel->triangleCount * 3; ++j)
if (LCR_renderer.mapTriangles[j] == i)
{
used = 1;
break;
}
if (used)
i++;
else
{
for (int j = 0; j < 3; ++j)
LCR_renderer.mapVertices[3 * i + j] =
LCR_renderer.mapVertices[(LCR_renderer.mapModel->vertexCount - 1) * 3 + j];
for (int j = 0; j < LCR_renderer.mapModel->triangleCount * 3; ++j)
if (LCR_renderer.mapTriangles[j] == LCR_renderer.mapModel->vertexCount - 1)
LCR_renderer.mapTriangles[j] = i;
LCR_renderer.mapModel->vertexCount--;
}
}
}
/**
Builds the internal 3D model of the currently loaded map. Returns 1 on
success, 0 otherwise (e.g. not enough space).
*/
uint8_t _LCR_rendererBuildMapModel(void)
{
LCR_log("building map model");
uint8_t blockShapeBytes[LCR_MAP_BLOCK_SHAPE_MAX_BYTES];
uint8_t blockShapeByteCount;
S3L_model3DInit(LCR_renderer.mapVertices,0,LCR_renderer.mapTriangles,0,LCR_renderer.mapModel);
for (int j = 0; j < LCR_currentMap.blockCount; ++j)
{
if ((j + 1) % LCR_SETTING_TRIANGLE_CULLING_PERIOD == 0)
_LCR_rendererCullHiddenMapTriangles();
S3L_Unit originOffset = -1 * LCR_MAP_SIZE_BLOCKS / 2 * LCR_RENDERER_UNIT;
S3L_Index triangleIndices[3];
const uint8_t *block = LCR_currentMap.blocks + j * LCR_BLOCK_SIZE;
uint8_t
blockType = block[0],
edgeBits, // bottom, top, left, right, front, bottom
bx, by, bz, // block coords
vx, vy, vz, // vertex coords
vi = 0; // vertex index (0, 1 or 2)
LCR_mapBlockGetCoords(block,&bx,&by,&bz);
LCR_mapGetBlockShape(blockType,LCR_mapBlockGetTransform(block),
blockShapeBytes,&blockShapeByteCount);
for (int i = 0; i < blockShapeByteCount; ++i)
{
if (vi == 0)
edgeBits = (by == 0) |
((by == LCR_MAP_SIZE_BLOCKS - 1) << 1) |
((bx == 0) << 2) |
((bx == LCR_MAP_SIZE_BLOCKS - 1) << 3) |
((bz == 0) << 4) |
((bz == LCR_MAP_SIZE_BLOCKS - 1) << 5);
LCR_decodeMapBlockCoords(blockShapeBytes[i],&vx,&vy,&vz);
edgeBits &= (vy == 0) | ((vy == LCR_BLOCK_SHAPE_COORD_MAX) << 1) |
((vx == 0) << 2) | ((vx == LCR_BLOCK_SHAPE_COORD_MAX) << 3) |
((vz == 0) << 4) | ((vz == LCR_BLOCK_SHAPE_COORD_MAX) << 5);
triangleIndices[vi] = _LCR_addMapVertex(
originOffset + (((S3L_Unit) bx) * LCR_RENDERER_UNIT) +
(LCR_RENDERER_UNIT * ((S3L_Unit) vx)) / LCR_BLOCK_SHAPE_COORD_MAX,
(originOffset + (((S3L_Unit) by) * LCR_RENDERER_UNIT)) / 2 +
(LCR_RENDERER_UNIT / 2 * ((S3L_Unit) vy)) / LCR_BLOCK_SHAPE_COORD_MAX,
originOffset + (((S3L_Unit) bz) * LCR_RENDERER_UNIT) +
(LCR_RENDERER_UNIT * ((S3L_Unit) vz)) / LCR_BLOCK_SHAPE_COORD_MAX);
if (vi < 2)
vi++;
else
{
// don't add triangles completely at the floor or ceiling of the map
if (!edgeBits)
{
#define VERT(n,c) LCR_renderer.mapVertices[3 * n + c]
uint8_t blockMat = LCR_mapBlockGetMaterial(block);
uint8_t triangleData =
(((VERT(triangleIndices[0],0) == VERT(triangleIndices[1],0)) &&
(VERT(triangleIndices[1],0) == VERT(triangleIndices[2],0))) << 4) |
(((VERT(triangleIndices[0],2) == VERT(triangleIndices[1],2)) &&
(VERT(triangleIndices[1],2) == VERT(triangleIndices[2],2))) << 5);
#undef VERT
if (triangleData & 0xf0) // wall?
{
triangleData |=
((blockMat == LCR_BLOCK_MATERIAL_CONCRETE) ||
(blockMat == LCR_BLOCK_MATERIAL_ICE) ||
(blockType == LCR_BLOCK_FULL_ACCEL) ||
(blockType == LCR_BLOCK_FULL_STICKER)) ?
LCR_IMAGE_WALL_CONCRETE : LCR_IMAGE_WALL_WOOD;
}
else
{ // TODO: tidy this mess?
if (blockType == LCR_BLOCK_FULL_ACCEL)
triangleData |= LCR_IMAGE_GROUND_ACCEL;
else if (blockType == LCR_BLOCK_FULL_STICKER)
triangleData |= LCR_IMAGE_GROUND_STICKER;
else
switch (blockMat)
{
case LCR_BLOCK_MATERIAL_CONCRETE:
triangleData |= LCR_IMAGE_GROUND_CONCRETE;
break;
case LCR_BLOCK_MATERIAL_GRASS:
triangleData |= LCR_IMAGE_GROUND_GRASS;
break;
case LCR_BLOCK_MATERIAL_DIRT:
triangleData |= LCR_IMAGE_GROUND_DIRT;
break;
case LCR_BLOCK_MATERIAL_ICE:
triangleData |= LCR_IMAGE_GROUND_ICE;
break;
default:
break;
}
}
_LCR_addMapTriangle(
triangleIndices[0],triangleIndices[1],triangleIndices[2],
triangleData);
}
vi = 0;
}
}
}
// TODO: also cull the triangles in the loop by some N steps
_LCR_rendererCullHiddenMapTriangles();
return 1;
}
uint8_t LCR_rendererInit(void)
{
LCR_log("initializing renderer");
LCR_renderer.mapModel = LCR_renderer.models3D;
if (!_LCR_rendererBuildMapModel())
return 0;
S3L_sceneInit(LCR_renderer.models3D,1,&LCR_renderer.scene3D);
return 1;
}
void LCR_rendererMoveCamera(LCR_SpaceUnit forwRightUpOffset[3],
LCR_SpaceUnit yawPitchOffset[2])
{
S3L_Vec4 f, r, u;
S3L_rotationToDirections(LCR_renderer.scene3D.camera.transform.rotation,
S3L_FRACTIONS_PER_UNIT,&f,&r,&u);
LCR_renderer.scene3D.camera.transform.translation.x +=
((f.x * forwRightUpOffset[0] + r.x * forwRightUpOffset[1] +
u.x * forwRightUpOffset[2]) * S3L_FRACTIONS_PER_UNIT) / LCR_SQUARE_SIDE_LEN;
LCR_renderer.scene3D.camera.transform.translation.y +=
((f.y * forwRightUpOffset[0] + r.y * forwRightUpOffset[1] +
u.y * forwRightUpOffset[2]) * S3L_FRACTIONS_PER_UNIT) / LCR_SQUARE_SIDE_LEN;
LCR_renderer.scene3D.camera.transform.translation.z +=
((f.z * forwRightUpOffset[0] + r.z * forwRightUpOffset[1] +
u.z * forwRightUpOffset[2]) * S3L_FRACTIONS_PER_UNIT) / LCR_SQUARE_SIDE_LEN;
LCR_renderer.scene3D.camera.transform.rotation.y +=
(yawPitchOffset[0] * S3L_FRACTIONS_PER_UNIT) / LCR_SQUARE_SIDE_LEN;
LCR_renderer.scene3D.camera.transform.rotation.x +=
(yawPitchOffset[1] * S3L_FRACTIONS_PER_UNIT) / LCR_SQUARE_SIDE_LEN;
if (LCR_renderer.scene3D.camera.transform.rotation.x > S3L_FRACTIONS_PER_UNIT / 4)
LCR_renderer.scene3D.camera.transform.rotation.x = S3L_FRACTIONS_PER_UNIT / 4;
if (LCR_renderer.scene3D.camera.transform.rotation.x < -1 * S3L_FRACTIONS_PER_UNIT / 4)
LCR_renderer.scene3D.camera.transform.rotation.x = -1 * S3L_FRACTIONS_PER_UNIT / 4;
}
/**
Draws background sky, offsets are in multiples of screen dimensions
(e.g. S3L_FRACTIONS_PER_UNIT / 2 for offsetH means half the screen width).
*/
void LCR_rendererDrawSky(int sky, S3L_Unit offsetH, S3L_Unit offsetV)
{
int anchorPoint[2], y;
unsigned long pixelIndex;
unsigned int topColor, bottomColor;
sky = 8 + 4 * sky;
LCR_loadImage(sky);
topColor = LCR_sampleImage(0,0);
LCR_loadImage(sky + 3);
bottomColor = LCR_sampleImage(LCR_IMAGE_SIZE - 1,LCR_IMAGE_SIZE - 1);
anchorPoint[0] = ((LCR_EFFECTIVE_RESOLUTION_X * offsetH)
/ S3L_FRACTIONS_PER_UNIT) %
(2 * LCR_IMAGE_SIZE * LCR_SETTING_SKY_SIZE);
if (anchorPoint[0] < 0)
anchorPoint[0] += 2 * LCR_IMAGE_SIZE * LCR_SETTING_SKY_SIZE;
anchorPoint[1] =
(LCR_EFFECTIVE_RESOLUTION_Y) / 3 - // 3: we place the center a bit more up
(LCR_EFFECTIVE_RESOLUTION_Y * offsetV) / S3L_FRACTIONS_PER_UNIT
- LCR_IMAGE_SIZE * LCR_SETTING_SKY_SIZE;
pixelIndex = 0;
y = anchorPoint[1] < 0 ? anchorPoint[1] : 0;
while (y < anchorPoint[1] && y < LCR_EFFECTIVE_RESOLUTION_Y) // top strip
{
for (int x = 0; x < LCR_EFFECTIVE_RESOLUTION_X; ++x)
{
LCR_drawPixel(pixelIndex,topColor);
pixelIndex++;
}
y++;
}
anchorPoint[1] += 2 * LCR_IMAGE_SIZE * LCR_SETTING_SKY_SIZE;
int linesLeft = 0;
int skyPart = 0;
while (y < anchorPoint[1] && y < LCR_EFFECTIVE_RESOLUTION_Y) // image strip
{
if (!linesLeft)
{
LCR_loadImage(sky + skyPart);
linesLeft = LCR_IMAGE_SIZE / 2;
skyPart++;
}
if (y >= 0)
{
for (int ix = 0; ix < 2 * LCR_IMAGE_SIZE * LCR_SETTING_SKY_SIZE;
ix += LCR_SETTING_SKY_SIZE)
{
unsigned int color = LCR_getNextImagePixel();
unsigned long startIndex = pixelIndex;
for (int k = 0; k < LCR_SETTING_SKY_SIZE; ++k)
{
if (y + k >= LCR_EFFECTIVE_RESOLUTION_Y)
break;
for (int j = 0; j < LCR_SETTING_SKY_SIZE; ++j)
{
int x = anchorPoint[0] + ix + j;
if (x >= 2 * LCR_IMAGE_SIZE * LCR_SETTING_SKY_SIZE)
x -= 2 * LCR_IMAGE_SIZE * LCR_SETTING_SKY_SIZE;
while (x < LCR_EFFECTIVE_RESOLUTION_X)
{
LCR_drawPixel(startIndex + x,color);
x += 2 * LCR_IMAGE_SIZE * LCR_SETTING_SKY_SIZE;
}
}
startIndex += LCR_EFFECTIVE_RESOLUTION_X;
}
}
pixelIndex += LCR_EFFECTIVE_RESOLUTION_X * LCR_SETTING_SKY_SIZE;
y += LCR_SETTING_SKY_SIZE;
}
else
{
for (int ix = 0; ix < 2 * LCR_IMAGE_SIZE; ++ix)
LCR_getNextImagePixel();
for (int i = 0; i < LCR_SETTING_SKY_SIZE; ++i)
{
if (y >= 0)
for (int x = 0; x < LCR_EFFECTIVE_RESOLUTION_X; ++x)
{
LCR_drawPixel(pixelIndex,topColor);
pixelIndex++;
}
y++;
}
}
linesLeft--;
}
while (y < 0) // can still be the case
y = 0;
while (y < LCR_EFFECTIVE_RESOLUTION_Y) // bottom strip
{
for (int x = 0; x < LCR_EFFECTIVE_RESOLUTION_X; ++x)
{
LCR_drawPixel(pixelIndex,bottomColor);
pixelIndex++;
}
y++;
}
}
void LCR_rendererDraw(void)
{
LCR_renderer.previousTriangleID = -1;
S3L_newFrame();
LCR_rendererDrawSky(2,
LCR_renderer.scene3D.camera.transform.rotation.y,
-4 * LCR_renderer.scene3D.camera.transform.rotation.x);
S3L_drawScene(LCR_renderer.scene3D);
}
#endif // guard