Update
This commit is contained in:
parent
1d0c3e3980
commit
24d20f5c13
14 changed files with 1730 additions and 1695 deletions
|
@ -7,6 +7,10 @@ One binary digit (a "place" for binary value in computer memory) can be used to
|
|||
1. With single bits we represent basic **[logic](logic.md)** values, i.e. *true* and *false*, and perform logic operations (e.g. [AND](and.md), [OR](or.md) etc.) with so called **[Boolean](bool.md) algebra**.
|
||||
2. By grouping multiple bits together we create a **base-2 numeral system** that behaves in the same way as our decimal system and can be used to record numbers. We can build this numeral system with the above mentioned Boolean algebra, i.e. we extend our simple one bit system to multi bit system allowing to work not just with two values (*true* and *false*) but with many distinct values (whole numbers, from which we may later construct fractions etc.). Thanks to this we can implement algebraic operations such as addition, multiplication, square roots etc.
|
||||
|
||||
Of course the binary system didn't appear from nowhere, people in ancient times used similar systems, e.g. the poet Pingala (200 BC) created a system that used two syllables for counting, old Egyptians used so called Eye of Horus, a unit based on power of two fractions etc. Thomas Harriot used something very similar to today's binary in 1600s. It's just that until computers appeared there wasn't much practical use for it, so no one cared.
|
||||
|
||||
{ There is one classic but overplayed [joke](jokes.md) that became extremely cringe exactly by being too overplayed by wannabe haxors who think learning binary makes you Einstein, however since many noobs will likely be reading this and it helps understand the subject, it may be good to tell it anyway. It goes like this: There are 10 types of people -- those who understand binary and those who don't. Sometimes this is extended with: and those who don't know this joke is in base 3. You can also give people the finger by sending them "binary four". ~drummyfish }
|
||||
|
||||
## Boolean Algebra ("True/False Logic")
|
||||
|
||||
In binary we start by working with single [bits](bit.md) -- each bit can hold two values, 1 and 0. We may see bits now like "simple numbers", we'll want to do operations with them, but they can only ever be one of the two values. Though we can interpret these values in any way -- e.g. in electronics we see them as high vs low [voltage](voltage.md) -- in mathematics we traditionally turn to using [logic](logic.md) and interpret them as meaning *true* (1) and *false* (0). This will further allow us to apply all the knowledge and theory we have gathered about logic, such as formulas that allow us to simplify binary expressions etc.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue