Update
This commit is contained in:
parent
43b3543ac6
commit
325284d58c
5 changed files with 11 additions and 6 deletions
|
@ -10,4 +10,4 @@ The advantage of digital technology is its resilience to noise which prevents de
|
|||
|
||||
Of course, digital data may become distorted too, it is just less likely and it's easier to deal with this. It for example happens that space particles (and similar physics phenomena, e.g. some quantum effects) flip bits in computer memory, i.e. there is always a probability of some [bit](bit.md) flipping from 0 to 1 or vice versa. We call this **data [corruption](corruption.md)**. This may also happen due to physical damage to digital media (e.g. scratches on the surface of CDs), imperfections in computer network transmissions (e.g. packet loss over [wifi](wifi.md)) etc. However we can introduce further measures to prevent, detect and correct data corruption, e.g. by keeping [redundant](redundancy.md) copies (2 copies of data allow detecting corruption, 3 copies allow even its correction), keeping [checksums](checksum.md) or [hashes](hash.md) (which allow only detection of corruption but don't take much extra space), employing error correcting codes etc.
|
||||
|
||||
Another way in which digital data can degrade similarly to analog data is **reencoding between lossy-[compressed](compression.md) formats** (in the spirit of the famous "needs more jpeg meme"). A typical example is digital movies: as new standard for video encoding are emerging, old movies are being reconverted from old formats to the new ones, however as video is quite heavily lossy-compressed, losses and distortion of information happens between the reencodings. This is best seen in videos and images circulating on the internet that are constantly being ripped and converted between different formats. This way it may happen that digital movies recorded nowadays may only survive into the future in very low quality, just like old analog movies survived until today in degraded quality. This can be prevented by storing the original data only with lossless compression and with each new emerging format create the release of the data from the original.
|
||||
Another way in which digital data can degrade similarly to analog data is **reencoding between lossy-[compressed](compression.md) formats** (in the spirit of the famous "needs more jpeg" [meme](meme.md)). A typical example is digital movies: as new standard for video encoding are emerging, old movies are being reconverted from old formats to the new ones, however as video is quite heavily lossy-compressed, losses and distortion of information happens between the reencodings. This is best seen in videos and images circulating on the internet that are constantly being ripped and converted between different formats. This way it may happen that digital movies recorded nowadays may only survive into the future in very low quality, just like old analog movies survived until today in degraded quality. This can be prevented by storing the original data only with lossless compression and with each new emerging format create the release of the data from the original.
|
Loading…
Add table
Add a link
Reference in a new issue