master
Miloslav Ciz 1 year ago
parent 1d031b7d3a
commit 7f05aeef53

@ -65,7 +65,8 @@ Nothing is [perfect](perfect.md), not even C; it was one of the first relatively
- **The preprocessor isn't exactly elegant**, it has completely different syntax and rules from the main language, not very suckless -- ideally preprocessor uses the same language as the base language.
- **The syntax isn't perfect**, e.g. it's pretty weird that the condition after `if` has to be in brackets, it could be designed better. Keywords also might be better being single chars, like `?` instead of `if` or the weird long ass names with spaces like `unsigned long long` could be made nicer. A shorter, natural-language-neutral source code would be probably better. Both line and block comments could be implemented with a single character (e.g. `#` for line comment, ending with a newline or another `#`, `##` for block comment ending with another `##`?).
- **Some basic things that are part of libraries or extensions**, like fixed with types and binary literals and possibly very basic I/O (putchar/readchar) could be part of the language itself.
- **Some undefined behavior might be better defined** -- undefined behavior isn't bad in general, it is what allows C to be so fast and efficient in the first place, but some of it has shown to be rather cumbersome; for example the unspecified representation of numbers or byte size leads to a lot of trouble (unknown upper bounds, sizes, undefined behavior of many operators etc.) while practically all computers have settled on using 8 bit bytes and [two's complement](twos_complement.md) -- this could easily be made a mandatory assumption which would simplify great many things without doing basically any harm. New versions of C actually already settle on two's complement. This doesn't mean C should be shaped to reflect the degenerate "[modern](modern.md)" trends in programming though!
- **Some undefined behavior might be better defined** -- undefined behavior isn't bad in general, it is what allows C to be so fast and efficient in the first place, but some of it has shown to be rather cumbersome; for example the unspecified representation of integers, their binary size and behavior of floats leads to a lot of trouble (unknown upper bounds, sizes, undefined behavior of many operators etc.) while practically all computers have settled on using 8 bit bytes and [two's complement](twos_complement.md) -- this could easily be made a mandatory assumption which would simplify great many things without doing basically any harm. New versions of C actually already settle on two's complement. This doesn't mean C should be shaped to reflect the degenerate "[modern](modern.md)" trends in programming though!
- All that stuff with *.c* and *.h* files is unnecessary, there should just be one file type -- this isn't part of the language per se, but it's part of its culture.
- TODO: moar
## Basics

@ -38,6 +38,8 @@ int main(void)
**Char data type signedness is not defined**. The signedness can be explicitly "forced" by specifying `signed char` or `unsigned char`.
**[Floating point](float.md) results are not completely defined**, no representation (such as IEEE 754) is defined and there may appear small differences in floating operations under different machines or e.g. compiler optimization settings -- this may lead to [nondeterminism](determinism.md).
## Memory Unsafety
Besides being extra careful about writing memory safe code, one needs to also know that **some functions of the standard library are memory unsafe**. This is regarding mainly string functions such as `strcpy` or `strlen` which do not check the string boundaries (i.e. they rely on not being passed a string that's not zero terminated and so can potentially touch memory anywhere beyond); safer alternatives are available, they have an `n` added in the name (`strncpy`, `strnlen`, ...) and allow specifying a length limit.

@ -1,6 +1,6 @@
# C Tutorial
{ Still a work in progress. ~drummyfish }
{ Still a work in progress, but 99% complete. ~drummyfish }
This is a relatively quick [C](c.md) tutorial.

@ -2,13 +2,17 @@
*"God doesn't play dice."* --[some German dude](einstein.md)
Deterministic system (such as a computer program or an equation) is one which over time evolves without any involvement of [randomness](randomness.md) and probability; i.e. its current state along with the rules according to which it behaves unambiguously and precisely determine its following state. This means that a deterministic [algorithm](algorithm.md) will always give the same result if run multiple times with the same input values. Determinism is an extremely important concept in [computer science](compsci.md) and [programming](programming.md) (and in many other fields of science and philosophy).
Deterministic system (such as a computer program or an equation) is one which over time evolves without any involvement of [randomness](randomness.md) and probability; i.e. its current state along with the rules according to which it behaves unambiguously and precisely determine its following states. This means that a deterministic [algorithm](algorithm.md) will always give the same result if run multiple times with the same input values. Determinism is an extremely important concept in [computer science](compsci.md) and [programming](programming.md) (and in many other fields of science and philosophy).
[Computers](computer.md) are mostly deterministic by nature and design, they operate by strict rules and engineers normally try to eliminate any random behavior as that is mostly undesirable (with certain exceptions mentioned below) -- randomness leads to hard to detect and hard to fix [bugs](bug.md), unpredictability etc. Determinism has furthermore many advantages, for example if we want to record a behavior of a deterministic system, it is enough if we record only the inputs to the system without the need to record its state which saves a great amount of space -- if we later want to replay the system's behavior we simply rerun the system with the recorded inputs and its behavior will be the same as before (this is exploited e.g. in recording gameplay demos in video [games](game.md) such as [Doom](doom.md)).
Determinism can however also pose a problem, notable e.g. in cryptography where we DO want true randomness e.g. when generating [seeds](seed.md). Determinism in this case implies an attacker knowing the conditions under which we generated the seed can exactly replicate the process and arrive at the seed value that's supposed to be random and secret. For this reason some [CPUs](cpu.md) come with special hardware for generating truly random numbers.
Despite the natural determinism of computers as such, **computer programs aren't automatically deterministic** -- if you're writing a computer program, you have to make some effort to make it deterministic. This is because there are things such as [undefined behavior](undefined_behavior.md). For example the behavior of your program may depend on timing ([critical sections](critical_section.md), ...), performance of the computer (a game running on slower computer will render fewer [frames per second](fps.md), ...), [byte sex](endianness.md) (big vs little endian), accessing uninitialized memory (which many times contains undefined values) and many more things. All this means that your program run with the same input data will produce different results on different computers or under slightly different circumstances, i.e. it would be non-deterministic.
Despite the natural determinism of computers as such, **computer programs nowadays aren't always automatically deterministic** -- if you're writing a typical interactive computer program under some operating system, you have to make some extra bit of effort to make it deterministic. This is because there are things such as possible difference in timings or not perfectly specified behavior of [floating point](float.md) types in your language; for example a game running on slower computer will render fewer [frames per second](fps.md), ...) and if it has FPS-dependant physics, the time step of the physics engine will be longer on this computer, possibly resulting in slightly different physics behavior. This means that such program run with the same input data will produce different results on different computers or under slightly different circumstances, i.e. it would be non-deterministic.
Nevertheless **we almost always want our programs to be deterministic** (or at least deterministic under some conditions, e.g. on the specific hardware platform we are using), always try to make your programs deterministic unless you have a VERY good reason not to! **It doesn't take a huge effort to achieve determinism**, it's more of just taking the right design decisions (e.g. separating rendering and physics simulation), i.e. good programming leads to determinism and vice versa, determinism in your program indicates good programming. The reason why we want determinism is that such programs have great properties, e.g. that of easier debugging (bugs are reproducible just by knowing the exact inputs), easy and efficient recording of activity (e.g. demos in games), sometimes even time reversibility (like undos, but watch out -- this doesn't hold in general!). Determinism also itself serves as a kind of a [test](test.md) if the program is working right -- if your program can take recorded inputs and reproduce same behavior at every run, it shows that it's written well, without things like [undefined behavior](undefined_behavior.md) affecting its behavior.
{ The previous paragraph is here because I've talked to people who thought that determinism was some UBER feature that requires a lot of work and so on ("OMG Trackmania is deterministic, what a feat!") -- this is NOT the case. It may intuitively seem so to non-programmers or beginners, but really this is not the case. Non-determinism in software appears usually due to a fuck up, ignorance or bad design choice made by someone with a low competence. Trust me, determinism is practically always the correct way of making programs and it is NOT hard to do. ~drummyfish }
Even if we're creating a program that somehow works with probability, we usually want to make it deterministic. This means we don't use actual random numbers but rather [pseudorandom](pseudorandomness.md) number generators that output [chaotic](chaos.md) values which simulate randomness, but which will nevertheless be exactly the same when ran multiple times with the same initial seed. This is again important e.g. for [debugging](debugging.md) the system in which replicating the bug is key to fixing it.
@ -16,4 +20,6 @@ In theoretical computer science non-determinism means that a model of computatio
Determinism is also a philosophical theory that says our Universe is deterministic, i.e. that everything is already predetermined by the state of the universe and the laws of physics, i.e. that we don't have "free will" (whatever it means) etc. Many believe [quantum physics](quantum.md) disproves determinism which is however not the case, there may e.g. exist hidden variables that still make quantum physics deterministic. Anyway, this is already beyond the scope of technological determinism.
**Determinism does NOT guarantee [reversibility](reversibility.md)**, i.e. if we know a state of a deterministic system, it may not always be possible to say from which state it evolved. This reversibility is only possible if the rules of the system are such that no state can evolve from two or more different states. If this holds then it is always possible to time-reverse the system and step it backwards to its initial state. This may be useful for things such as [undos](undo.md) in programs. Also note that even if a system is reversible, it may be computationally very time consuming and sometimes practically impossible to reverse the system (imagine e.g. reversing a cryptographic [hash](hash.md) -- mathematical reversibility of such hash may be arbitrarily ensured by e.g. pairing each hash with the lowest value that produces it).
**Determinism does NOT guarantee [reversibility](reversibility.md)**, i.e. if we know a state of a deterministic system, it may not always be possible to say from which state it evolved. This reversibility is only possible if the rules of the system are such that no state can evolve from two or more different states. If this holds then it is always possible to time-reverse the system and step it backwards to its initial state. This may be useful for things such as [undos](undo.md) in programs. Also note that even if a system is reversible, it may be computationally very time consuming and sometimes practically impossible to reverse the system (imagine e.g. reversing a cryptographic [hash](hash.md) -- mathematical reversibility of such hash may be arbitrarily ensured by e.g. pairing each hash with the lowest value that produces it).
**Is [floating point](float.md) deterministic?** In theory even floating point arithmetic can of course be completely deterministic but there is the question of whether this holds about concrete specifications and implementations of floating point (e.g. in different programming languages) -- here in theory non-determinism may arise e.g. by some unspecified behavior such as rounding rules. In practice you can't rely on float being deterministic. The common float standard, IEEE 754, is basically deterministic, including rounding etc. (except for possible payload of [NaNs](nan.md), which shouldn't matter in most cases), but this e.g. doesn't hold for floating point types in [C](c.md)!

@ -2,7 +2,11 @@
Floating point arithmetic (normally just *float*) is a method of computer representation of [fractional](rational_number.md) numbers and approximating [real numbers](real_number.md), i.e. numbers with higher than [integer](integer.md) precision (such as 5.13), which is more complex than e.g. [fixed point](fixed_point.md). The core idea of it is to use a radix ("decimal") point that's not fixed but can move around so as to allow representation of both very small and very big values. Nowadays floating point is the standard way of [approximating](approximation.md) [real numbers](real_number.md) in computers (floating point types are called *real* in some programming languages, even though they represent only [rational numbers](rational_number.md), floats can't e.g. represent [pi](pi.md) exactly), basically all of the popular [programming languages](programming_language.md) have a floating point [data type](data_type.md) that adheres to the IEEE 754 standard, all personal computers also have the floating point hardware unit (FPU) and so it is widely used in all [modern](modern.md) programs. However most of the time a simpler representation of fractional numbers, such as the mentioned [fixed point](fixed_point.md), suffices, and weaker computers (e.g. [embedded](embedded.md)) may lack the hardware support so floating point operations are emulated in software and therefore slow -- for these reasons we consider floating point [bloat](bloat.md) and recommend the preference of fixed point.
Floating point can also get tricky, it works most of the time but a danger lies in programmers relying on this kind of [magic](magic.md) too much, some new generation programmers may not even be very aware of how float works. One possible pitfall is working with big and small numbers at the same time -- due to differing precision at different scales small values simply get lost when mixed with big numbers and sometimes this has to be worked around with tricks (see e.g. [this](http://the-witness.net/news/2022/02/a-shader-trick/) devlog of The Witness where a float time variable sent into [shader](shader.md) is periodically reset so as to not grow too large and cause the mentioned issue).
**Floating point is tricky**, it works most of the time but a danger lies in programmers relying on this kind of [magic](magic.md) too much, some new generation programmers may not even be very aware of how float works. Even though the principle is not so hard, the emergent complexity of the math is really complex. One floating point expression may evaluate differently on different systems, e.g. due to different rounding settings. One possible pitfall is working with big and small numbers at the same time -- due to differing precision at different scales small values simply get lost when mixed with big numbers and sometimes this has to be worked around with tricks (see e.g. [this](http://the-witness.net/news/2022/02/a-shader-trick/) devlog of The Witness where a float time variable sent into [shader](shader.md) is periodically reset so as to not grow too large and cause the mentioned issue). Another famous trickiness of float is that you shouldn't really be comparing them for equality with a normal `==` operator as small rounding errors may make even mathematically equal expressions unequal (i.e. you should use some range comparison instead).
And there is more: floating point behavior really depends on the language you're using (and possibly even compiler, its setting etc.) and it may not be always completely defined, leading to possible [nondeterministic](determinism.md) behavior which can cause real trouble e.g. in physics engines.
{ Really as I'm now getting down the float rabbit hole I'm seeing what a huge mess it all is, I'm not nearly an expert on this so maybe I've written some BS here, which just confirms how messy floats are. Anyway, from the articles I'm reading even being an expert on this issue doesn't seem to guarantee a complete understanding of it :) Just avoid floats if you can. ~drummyfish }
Is floating point literal evil? Well, of course not, but it is extremely overused. You may need it for precise scientific simulations, e.g. [numerical integration](numerical_integration.md), but as our [small3dlib](small3dlib.md) shows, you can comfortably do even [3D rendering](3d_rendering.md) without it. So always consider whether you REALLY need float. You mostly do not.

@ -70,15 +70,15 @@ August 12 1981 would see the released of **[IBM PC](ibm_pc.md)**, a personal com
In 1983 **[Richard Stallman](rms.md) announced his [GNU](gnu.md) project and invented [free (as in freedom) software](free_software.md)**, a kind of software that is freely shared and developed by the people so as to respect the users' freedom. This kind of ethical software stands opposed to the [proprietary](proprietary.md) corporate software, it would lead to creation of some of the most important software and to a whole revolution in software development and its licensing, it would spark the creation of other movements striving for keeping ethics in the information age.
On November 20 1985 the first version of **[Windows](windows.md) operating system** was sadly released by [Microsoft](microsoft.md). These systems would become the mainstream desktop operating systems despite their horrible design and they would unfortunately establish so called [Windows philosophy](windows_philosophy.md) that would irreversibly corrupt other mainstream technology.
1985: on November 20 the first version of the **[Windows](windows.md) operating system** was sadly released by [Microsoft](microsoft.md). These systems would become the mainstream desktop operating systems despite their horrible design and they would unfortunately establish so called [Windows philosophy](windows_philosophy.md) that would irreversibly corrupt other mainstream technology. Also in 1985 one of the deadliest software [bugs](bug.md) appeared: that in [Therac-25](therac_25.md), a medical radiotherapy device which fatally overdosed several patients with radiation.
On April 26 1986 the **[Chernobyl](chernobyl.md) nuclear disaster** happened (the worst accident of this kind in history) -- in north Ukraine (at the time under [USSR](ussr.md)) a nuclear [power plant](power_plant.md) exploded, contaminated a huge area with [radioactivity](radioactivity.md) and released a toxic radioactive cloud that would spread over Europe -- many would die either directly or indirectly (many years later due to radioactivity poisoning, estimated at many thousands). The Chernobyl area would be sealed in the 30 km radius. It is estimated the area won't be habitable again for several thousands of years.
On April 26 1986 the **[Chernobyl](chernobyl.md) nuclear disaster** happened (the worst power plant accident in history) -- in north Ukraine (at the time under [USSR](ussr.md)) a nuclear [power plant](power_plant.md) exploded, contaminated a huge area with [radioactivity](radioactivity.md) and released a toxic radioactive cloud that would spread over Europe -- many would die either directly or indirectly (many years later due to radioactivity poisoning, estimated at many thousands). The Chernobyl area would be sealed in the 30 km radius. It is estimated the area won't be habitable again for several thousands of years.
Around this time [Internet](internet.md) is not yet mainstream but it is, along with similar local networks, working and has active communities -- there is no world wide web yet but people are using [Usenet](usenet.md) and [BBSes](bbs.md) for "online" discussions with complete strangers.
Around this time [Internet](internet.md) is not yet mainstream but it is, along with similar local networks, working and has active communities -- there is no world wide web yet but people are using [Usenet](usenet.md) and [BBSes](bbs.md) for "online" discussions with complete strangers and developing early "online cultures".
At the beginning of 1991 [Tim Berners-Lee](berners_lee.md) created the **[World Wide Web](www.md)**, a network of interlinked pages on the Internet. This marks another huge step in the Internet revolution, the Web would become the primary Internet service and the greatest software platform for publishing any kind of information faster and cheaper than ever before. It is what would popularize the Internet and bring it to the masses.
On 25 August 1991 **[Linus Torvalds](linus_torvalds.md) announced [Linux](linux.md)**, his project for a completely free as in freedom Unix-like [operating system](os.md) kernel. Linux would become part of [GNU](gnu.md) and later one of the biggest and most successful software projects in history. It would end up powering Internet servers and supercomputers as well as desktop computers of a great number of users. Linux proved that free software works and surpasses proprietary systems.
Shortly after the **[Soviet Union](ussr.md) dissolved** and on 25 August 1991 **[Linus Torvalds](linus_torvalds.md) announced [Linux](linux.md)**, his project for a completely [free as in freedom](free_software.md) Unix-like [operating system](os.md) kernel. Linux would become part of [GNU](gnu.md) and later one of the biggest and most successful software projects in history. It would end up powering Internet servers and supercomputers as well as desktop computers of a great number of users. Linux proved that free software works and surpasses proprietary systems.
After this very recent history follows, it's hard to judge which recent events will be of historical significance much later. 1990s have seen a huge growth of computer power, video [games](game.md) such as [Doom](doom.md) led to development of [GPU](gpu.md)s and high quality computer graphics along with a wide adoption of computers by common people, which in turn helped the further growth of Internet. During the 90s we've also seen the rise of the [open source movement](open_source.md). Shortly after 2000 [Lawrence Lessig](lessig.md) founded [Creative Commons](creative_commons.md), an organization that came hand in hand with the [free culture](free_culture.md) movement inspired by the [free software movement](free_software.md). At this point over 50% of US households had a computer. Cell phones became a commonly owned item and after about 2005 so called "[smart](smart.md) phones" and other "smart" devices replaced them as a universal communication device capable of connecting to the Internet. Before 2020 we've seen a huge advancement in [neural network](neural_network.md) [Artificial Intelligence](ai.md) which will likely be the topic of the future. [Quantum computers](quantum.md) are being highly researched with already existing primitive prototypes; this will also likely be very important in the following years. Besides AI there has appeared a great interest and development of [virtual reality](vr.md), [drones](drone.md), electromobiles, robotic Mars exploration and others. However the society and technology has generally seen a decadence after 2010, [capitalism](capitalism.md) has pushed technology to become hostile and highly [abusive to users](capitalist_software.md), extreme [bloat](bloat.md) of technology causes highly inefficient, extremely expensive and unreliable technology. In addition society is dealing with a lot of serious issues such as the [global warming](global_warming.md) and many people are foreseeing a [collapse of society](collapse.md).

@ -2,7 +2,7 @@
The question of how to make a living by making something that's to be given out for free and without limitations is one of the most common in the context of [FOSS](foss.md)/[free culture](free_culture.md). Noobs often avoid this area just because they think it can't be done, even though there are ways of doing this and there are many people making living on FOSS, albeit ways perhaps more challenging than those of [proprietary](proprietary.md) products.
One has to be aware that **money and commercialization always brings a high risk of profit becoming the highest priority** (which is a "feature" hard-wired in [capitalism](capitalism.md)) which will compromise the quality and ethics of the produced work. Profiting specifically requires abusing someone else, taking something away from them. Therefore **it is ideal to create [LRS](lrs.md) on a voluntary basis, for free, in the creator's spare time**. This may be difficult to do but one can choose a lifestyle that minimizes expenses and therefore also time needed to spend at work, which will give more free time for the creation of [LRS](lrs.md). This includes living frugally, not consuming hardware and rather reusing old machines, making savings, not spending on unnecessary things such as smoking or fashion etc. And of course, if you can't make LRS full-time, you can still find relatively ethical ways of it supporting you and so, again, giving you a little more freedom and resources for creating it.
One has to be aware that **money and commercialization always brings a high risk of profit becoming the highest priority** (which is a "feature" hard-wired in [capitalism](capitalism.md)) which will compromise the quality and ethics of the produced work. Profiting specifically requires abusing someone else, taking something away from them. Therefore **it is ideal to create [LRS](lrs.md) on a voluntary basis, for free, in the creator's spare time**. This may be difficult to do but one can choose a lifestyle that minimizes expenses and therefore also time needed to spend at [work](work.md), which will give more free time for the creation of [LRS](lrs.md). This includes living frugally, not consuming hardware and rather reusing old machines, making savings, not spending on unnecessary things such as smoking or fashion etc. And of course, if you can't make LRS full-time, you can still find relatively ethical ways of it supporting you and so, again, giving you a little more freedom and resources for creating it.
Also if can somehow rip off a rich corporation and get some money for yourself, do it. Remember, corporations aren't people, they can't feel pain, they probably won't even notice their loss and even if you hurt them, you help the society by hurting a predator.
@ -23,8 +23,9 @@ Considering all things mentioned above, here are some concrete things of making
- **[donations](donation.md)**: You may ask for donations e.g. on your website or Patreon (people often ask for [cryptocurrencies](crypto.md) or traditional money via services like [Liberapay](liberapay.md), PayPal or Buy Me a Coffee). For significant earnings you need to be somewhat popular because people donate extremely rarely, but if your work is good, there sometimes appears a generous donor who sends you a lot of money ({Happened to me at least once. I hereby thank the person greatly. ~drummyfish}). It can help if you create "content" such as programming videos alongside your project to get some "following", but it may also distract you and take some of your energy. People like [Luke Smith](luke_smith.md) make quite some big money like this. A lot of [free culture](free_culture.md) artists are successful in creating free art this way.
- **[crowd funding](crowd_funding.md)**: A method similar to donations but a little more "encouraging" for the donors. You set a financial goal and if enough people donate to reach that goal, you get the money and create the project. Patreon and Kickstarter are typically used for this.
- **[pay what you want](pay_what_you_want.md)**: Here you create the work and then offer a download with optional payment, typically with some suggested price. People who can't afford to pay don't have to. This method has the advantage of not putting you under deadline pressures like the crowd funding method. Sites like [itch.io](https://itch.io/) are friendly to this option.
- **selling physical products and [merchandise](merch.md)** ("merch"): This method makes use of the fact that selling physical items is usually not considered unethical, unlike selling copies of information. So you can e.g. create a [free](free_software.md) video [game](game.md) and then sell T-shirts or coffee mugs with that video game's themes. In the past some [GNU](gnu.md)/[Linux](linux.md) distros used to sell their systems on nice "officials" CDs, but nowadays CDs are kind of dead. [Open consoles](open_console.md) kind of do this as well, they create [FOSS](foss.md) games and tools and then sell hardware that runs these games.
- **selling physical products and [merchandise](merch.md)** ("merch"): This method makes use of the fact that selling physical items is considered less (even though not completely!) unethical, unlike selling copies of information. So you can e.g. create a [free](free_software.md) video [game](game.md) and then sell T-shirts or coffee mugs with that video game's themes. In the past some [GNU](gnu.md)/[Linux](linux.md) distros used to sell their systems on nice "officials" CDs, but nowadays CDs are kind of dead. [Open consoles](open_console.md) kind of do this as well, they create [FOSS](foss.md) games and tools and then sell hardware that runs these games.
- You can specifically **make use of the advantages of LRS** and get some company to pay you. For example an [open console](open_console.md) creator will be highly interested in an engine for 3D games that will run on very low-spec embedded hardware because that will increase interest in their product. Existing FOSS engines, even the lightweight ones, are [bloated](bloat.md) and won't run on such hardware, however LRS ones, such as [small3dlib](small3dlib.md), will. Even if the company doesn't pay you directly, they might at least send you their product for free ({I got some open consoles for free for porting [Anarch](anarch.md) to them. ~drummyfish}).
- **selling services**: Like with merchandise, selling services is normally not considered unethical and so we can do it. The services can e.g. be running a server with [LRS](lrs.md) software with paid accounts or offering maintenance/configuration of someone else's servers. This supports the development of the software in question and helps you get paid.
- **selling on proprietary sites** (CONTROVERSIAL): This may not be acceptable by everyone, but it can be possible to create a free work and then distribute it under [free](free_software.md) conditions in some places and simultaneously sell this item in places distributing [proprietary](proprietary.md) assets. E.g. one may create a 3D model and put it under a free license on [opengameart](oga.md) while also selling it in 3D models stores like TurboSquid -- this will make the model available for everyone as free but will make people who don't bother to search the free sites pay for it. This may potentially bring much more money than the other methods as the proprietary stores have big traffic and people there are specifically willing to spend money. However, this supports the [intellectual property](intellectual_property.md) business. **Important note**: read the terms&condition of the proprietary site, it may for example be illegal for you to share your assets elsewhere if the proprietary site makes you *sign* an exclusive deal for them. {I am actually guilty of this, been selling some small 3D models on TurboSquid. It provides a kind of stable mini-income of about $3/month. ~drummyfish}
- **[non-profit](non_profit.md)**: It is possible to run a non-profit organization that creates [software](software.md) for public benefit -- details differ by each country but a non-profit may receive funding from the state and be exempted from taxes. This method may however require a lot of effort (as running an organization is much more difficult than setting a donation website) and may potentially be limiting in some ways (governments may have condition for the funding etc.).
- **[non-profit](non_profit.md)**: It is possible to run a non-profit organization that creates [software](software.md) for public benefit -- details differ by each country but a non-profit may receive funding from the state and be exempted from taxes. This method may however require a lot of effort (as running an organization is much more difficult than setting a donation website) and may potentially be limiting in some ways (governments may have condition for the funding etc.).
- **abuse state and your employer**: You may at least temporarily avoid work by e.g. registering as unemployed and living on welfare (possibly combined with your saved money), getting some kind of disability pension (pretend you're autist or something) or by getting employed somewhere and becoming "sick" (give something to your doctor so he gives you a sick paper -- if you're a [woman](woman.md) you may for example suck his dick). Do this every few months.
Loading…
Cancel
Save