Update
This commit is contained in:
parent
6ac96e5e81
commit
a8a438148b
33 changed files with 1816 additions and 1753 deletions
|
@ -1,6 +1,6 @@
|
|||
# Software Rendering
|
||||
|
||||
[Software](software.md) (SW) rendering refers to [rendering](rendering.md) [computer graphics](graphics.md) without the help of [graphics card](gpu.md) (GPU), i.e. computing images only with [CPU](cpu.md). This mostly means rendering [3D graphics](3d_rendering.md) but can also refer to other kinds of graphics such as drawing [fonts](font.md) or [video](video.md). Before GPUs were invented, all rendering was done in software, of course -- games such as [Quake](quake.md) or Thief were designed with SW rendering and only added optional GPU acceleration later. SW rendering for traditional 3D graphics is also called software [rasterization](rasterization.md), as rasterization is the basis of current real-time 3D graphics.
|
||||
[Software](software.md) (SW) rendering refers to [rendering](rendering.md) [computer graphics](graphics.md) without the help of [graphics card](gpu.md) (GPU), or in other words computing images only with [CPU](cpu.md). Most commonly the term means rendering [3D graphics](3d_rendering.md) but may as well refer to other sorts of graphics such as drawing [fonts](font.md) or [video](video.md). Before the invention of GPU card all rendering was done in software of course -- games such as [Quake](quake.md) or Thief were designed with SW rendering and only added optional GPU acceleration later. SW rendering for traditional 3D graphics is also called software [rasterization](rasterization.md), for rasterization is the basis of current real-time 3D graphics.
|
||||
|
||||
SW rendering has advantages and disadvantages, though from our point of view its advantages prevail (at least given only capitalist GPUs exist nowadays). Firstly it is **much slower** than GPU graphics -- GPUs are designed to perform graphics-specific operations very quickly and, more importantly, they can process many pixels (and other elements) in [parallel](parallelism.md), while a CPU has to compute pixels sequentially one by one and that in addition to all other computations it is otherwise performing. This causes a much lower [FPS](fps.md) in SW rendering. For this reasons SW rendering is also normally of **lower quality** (lower resolution, [nearest neighbour](nn.md) texture filtering, ...) to allow workable FPS. Nevertheless thanks to the ginormous speeds of today's CPUs simple fullscreen SW rendering can be pretty fast on PCs and achieve even above 60 FPS; on slower CPUs (typically [embedded](embedded.md)) SW rendering is usable normally at around 30 FPS if resolutions are kept small.
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue