This commit is contained in:
Miloslav Ciz 2023-12-07 00:48:04 +01:00
parent c4fb268878
commit b591ad0284
6 changed files with 36 additions and 4 deletions

View file

@ -4,7 +4,7 @@ In [mathematics](math.md) chaos is a phenomenon that makes it extremely difficul
Perhaps the most important point is that a chaotic system is difficult to predict NOT because of [randomness](randomness.md), lack of information about it or even its incomprehensible complexity (many chaotic systems are defined extremely simply), but because of its inherent structure that greatly amplifies any slight nudge to the system and gives any such nudge a great significance. This may be caused by things such as [feedback loops](feedback_loop.md) and [domino effects](domino_effect.md). Generally we describe this behavior as so called **[butterfly effect](butterfly_effect.md)** -- we liken this to the fact that a butterfly flapping its wings somewhere in a forest can trigger a sequence of events that may lead to causing a tornado in a distant city a few days later.
Examples of chaotic systems are the double pendulum, logistic map, weather (which is why it is so difficult to predict it), dice roll, [rule 30](rule_30.md) cellular automaton, [logistic map](logistic_map.md), gravitational interaction of [N bodies](n_body.md) or [Lorenz differential equations](lorenz_system.md). [Langton's ant](langtons_ant.md) sometimes behaves chaotically. Another example may be e.g. a billiard table with multiple balls: if we hit one of the balls with enough strength, it'll shoot and bounce off of walls and other balls, setting them into motion and so on until all balls come to stop in a specific position. If we hit the ball with exactly the same strength but from an angle differing just by 1 degree, the final position would probably end up being completely different. Despite the system being deterministic (governed by exact and predictable laws of motion, neglecting things like quantum physics) a slight difference in input causes a great different in output.
Examples of chaotic systems are the double pendulum, weather (which is why it is so difficult to predict it), dice roll, [rule 30](rule_30.md) cellular automaton, [logistic map](logistic_map.md), gravitational interaction of [N bodies](n_body.md) or [Lorenz differential equations](lorenz_system.md). [Langton's ant](langtons_ant.md) sometimes behaves chaotically. Another example may be e.g. a billiard table with multiple balls: if we hit one of the balls with enough strength, it'll shoot and bounce off of walls and other balls, setting them into motion and so on until all balls come to stop in a specific position. If we hit the ball with exactly the same strength but from an angle differing just by 1 degree, the final position would probably end up being completely different. Despite the system being deterministic (governed by exact and predictable laws of motion, neglecting things like quantum physics) a slight difference in input causes a great different in output.
A simple example of a chaotic equation is also the function *sin(1/x)* for *x* near 0 where it oscillates so quickly that just a tiny shift along the *x* axis drastically changes the result. See how unpredictable results a variant of the function can give: