This repository has been archived on 2022-08-10. You can view files and clone it, but cannot push or open issues or pull requests.
chez-openbsd/s/5_3.ss

3094 lines
106 KiB
Scheme
Raw Normal View History

2022-07-29 15:12:07 +02:00
;;; 5_3.ss
;;; Copyright 1984-2017 Cisco Systems, Inc.
;;;
;;; Licensed under the Apache License, Version 2.0 (the "License");
;;; you may not use this file except in compliance with the License.
;;; You may obtain a copy of the License at
;;;
;;; http://www.apache.org/licenses/LICENSE-2.0
;;;
;;; Unless required by applicable law or agreed to in writing, software
;;; distributed under the License is distributed on an "AS IS" BASIS,
;;; WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
;;; See the License for the specific language governing permissions and
;;; limitations under the License.
;;; Care must be take with floating point constants to permit cross
;;; compilation between machines with differing floating point styles.
;;; Negative zero, infinities, large or small numbers, non-binary
;;; fractions, and precise numbers are dangerous and should be calculated.
;;; positive zero, NAN, small integers, and binary fractions with only a few
;;; significant bits are safe on all current machines.
;;; examples:
;;; dangerous: -0.0, +inf.0, -inf.0, 1e100, 1e-100, 0.1
;;; safe: 0.0, +nan.0, 1.0, 2.0, 0.5
(begin
(eval-when (compile)
(define-constant max-float-exponent
(float-type-case
[(ieee) 1023]))
(define-constant min-float-exponent
(float-type-case
[(ieee) -1023]))
(define-constant float-mantissa-bits
(float-type-case
[(ieee) 53]))
)
(let ()
; could use foreign-entry? primitive if foreign.ss were loaded first
(define op-if-entry?
(let ()
(define lookup
(foreign-procedure "(cs)lookup_foreign_entry" (string)
void*))
(lambda (op name)
(and (not (eqv? (lookup name) 0))
(op name)))))
(let ()
(define cflop1
(lambda (x)
(foreign-procedure x (double-float) double-float)))
(define cflop2
(lambda (x)
(foreign-procedure x (double-float double-float) double-float)))
(define schemeop1
(lambda (x)
(foreign-procedure x (scheme-object) scheme-object)))
(define schemeop2
(lambda (x)
(foreign-procedure x (scheme-object scheme-object) scheme-object)))
(let ()
(define biglength (schemeop1 "(cs)s_integer_length"))
(define bigodd? (schemeop1 "(cs)s_bigoddp"))
(define float (schemeop1 "(cs)s_float"))
(define big=
(foreign-procedure "(cs)s_big_eq" (scheme-object scheme-object)
boolean))
(define big<
(foreign-procedure "(cs)s_big_lt" (scheme-object scheme-object)
boolean))
(define big-negate (schemeop1 "(cs)s_big_negate"))
(define integer-ash (schemeop2 "(cs)s_ash"))
(define integer+ (schemeop2 "(cs)add"))
(define integer* (schemeop2 "(cs)mul"))
(define integer- (schemeop2 "(cs)sub"))
(define integer/ (schemeop2 "(cs)s_div"))
(define intquotient (schemeop2 "(cs)ss_trunc"))
(define intquotient-remainder (schemeop2 "(cs)ss_trunc_rem"))
(define intremainder (schemeop2 "(cs)rem"))
(define $flsin (cflop1 "(cs)sin"))
(define $flcos (cflop1 "(cs)cos"))
(define $flasin (cflop1 "(cs)asin"))
(define $flacos (cflop1 "(cs)acos"))
(define $flfloor (cflop1 "(cs)floor"))
(define $flceiling (cflop1 "(cs)ceil"))
(let ()
(define omega
(float-type-case
[(ieee) (float #e1.7976931348623157e308)]))
(define $flexpt
(machine-case
[(i3nt ti3nt a6s2 ta6s2 i3s2 ti3s2 i3nb ti3nb a6nb ta6nb)
; pow(nan,+0.0) => nan instead of +1.0
(let ([cexpt (cflop2 "(cs)pow")])
(lambda (x y)
(cond
[(fl= y 0.0) 1.0]
[else (cexpt x y)])))]
[else (cflop2 "(cs)pow")]))
(define $fltan (cflop1 "(cs)tan"))
(define flcosh (cflop1 "(cs)cosh"))
(define fltanh
(machine-case
[(i3fb ti3fb)
; broken for -0.0, +/-inf
(let ([ctanh (cflop1 "(cs)tanh")])
(lambda (x)
(cond
[(fl= x 0.0) x]
[(infinity? x) (if (negated-flonum? x) -1.0 1.0)]
[else (ctanh x)])))]
[(i3nb ti3nb a6nb ta6nb)
; broken for -0.0
(let ([ctanh (cflop1 "(cs)tanh")])
(lambda (x)
(cond
[(fl= x 0.0) x]
[else (ctanh x)])))]
[else (cflop1 "(cs)tanh")]))
(define $flexp (cflop1 "(cs)exp"))
(define $fllog
(machine-case
[(a6s2 ta6s2 i3s2 ti3s2 i3ob ti3ob i3nb ti3nb a6nb ta6nb a6ob ta6ob)
; broken for -inf.0
(let ([clog (cflop1 "(cs)log")])
(lambda (x) (if (and (infinity? x) (negated-flonum? x)) +nan.0 (clog x))))]
[else (cflop1 "(cs)log")]))
(define $flsqrt (cflop1 "(cs)sqrt"))
(define flatan2
(machine-case
[(i3nt ti3nt)
; atan2(+inf.0,+inf.0) => pi/2 instead of pi/4
; atan2(-inf.0,-inf.0) => -pi/2 instead of -3pi/4
; atan2(+inf.0,-inf.0) => NAN instead of 3pi/4
; atan2(-inf.0,+inf.0) => NAN instead of -pi/4
; atan2(+0.0,-0.0) => +0.0 instead of +pi
; atan2(-0.0,-0.0) => -0.0 instead of -pi
; atan2(-0.0,-1.0) => pi instead of -pi
(let ([catan2 (cflop2 "(cs)atan2")])
(let ([pi (catan2 0.0 -1.0)])
(lambda (y x)
(cond
[(and (infinity? y) (infinity? x))
(let ([y (if (negated-flonum? y) -1.0 1.0)]
[x (if (negated-flonum? x) -1.0 1.0)])
(catan2 y x))]
[(and (fl= y 0.0) (not ($nan? x)))
(if (negated-flonum? y)
(if (negated-flonum? x) (fl- pi) (fl- 0.0))
(if (negated-flonum? x) pi 0.0))]
[else (catan2 y x)]))))]
[(i3ob ti3ob a6ob ta6ob a6s2 ta6s2 i3s2 ti3s2 i3nb ti3nb a6nb ta6nb)
; atan2(-0.0,+0.0) => +0.0 instead of -0.0
; atan2(+0.0,-0.0) => +0.0 instead of +pi
; atan2(-0.0,-0.0) => +0.0 instead of -pi
(let ([catan2 (cflop2 "(cs)atan2")])
(let ([pi (catan2 0.0 -1.0)])
(lambda (y x)
(cond
[(and (fl= y 0.0) (not ($nan? x)))
(if (negated-flonum? y)
(if (negated-flonum? x) (fl- pi) (fl- 0.0))
(if (negated-flonum? x) pi 0.0))]
[else (catan2 y x)]))))]
[else (cflop2 "(cs)atan2")]))
(define $flatan (cflop1 "(cs)atan"))
(define flsinh (cflop1 "(cs)sinh"))
(define flatanh
(or (op-if-entry? cflop1 "(cs)atanh")
; |x| <= 1
; principal expression:
; (log(1+x)-log(1-x))/2
; should use "log1p" but it doesn't exist on the 88k
(let ([f (lambda (x)
(fl* 0.5 (fl- ($fllog (fl+ 1.0 x)) ($fllog (fl- 1.0 x)))))])
(lambda (x)
(if (negated-flonum? x) (fl- (f (fl- x))) (f x))))))
(define fllog1+
(or (op-if-entry? cflop1 "(cs)log1p")
(lambda (x) ($fllog (fl+ 1.0 x)))))
(let ()
(define log2 ($fllog 2.0))
(define flhypot (cflop2 "(cs)hypot"))
(define flasinh
; scheme-coded version needs "log2"
(or (op-if-entry? cflop1 "(cs)asinh")
; principal expression:
; log(x + sqrt(xx + 1))
; avoids spurious overflows
; avoids underflow problems from negative x by using identity
; asinh(-x) = -asinh(x)
; should use "log1p" for small x but it doesn't exist on the 88k
(let ([f (lambda (x)
(if (fl= (fl+ x 1.0) x)
(fl+ ($fllog x) log2)
($fllog (fl+ x ($flsqrt (fl+ (fl* x x) 1.0))))))])
(lambda (x)
(if (negated-flonum? x) (fl- (f (fl- x))) (f x))))))
(define flacosh
; scheme-coded version needs "log2"
(or (op-if-entry? cflop1 "(cs)acosh")
; x >= 1
; principal expression:
; log(x + sqrt(xx - 1))
; avoids spurious overflows
(lambda (x)
(if (fl= (fl- x 1.0) x)
(fl+ ($fllog x) log2)
($fllog (fl+ x ($flsqrt (fl- (fl* x x) 1.0))))))))
(let ()
(define pi (flatan2 0.0 -1.0))
(define sqrt-omega ($flsqrt omega))
(define log-omega ($fllog omega))
(define acosh-omega (flacosh omega))
(let ()
(define-syntax define-trig-op
(syntax-rules ()
[(_ who flop cflop zero-value)
(set! who
(lambda (x)
(type-case x
[(flonum?) (flop x)]
[($inexactnum?) (cflop x)]
[(fixnum?) (if (fx= x 0) zero-value (who (fixnum->flonum x)))]
[(bignum? ratnum? $exactnum?) (who (inexact x))]
[else (nonnumber-error 'who x)])))]))
(define $flinteger-or-inf?
(lambda (x)
(fl= ($flfloor x) x)))
(define $flinteger?
(lambda (x)
(and ($flinteger-or-inf? x)
(not (exceptional-flonum? x)))))
(define nonnumber-error
(lambda (who what)
($oops who "~s is not a number" what)))
(define noncomplex-error
(lambda (who what)
($oops who "~s is not a complex number" what)))
(define nonreal-error
(lambda (who what)
($oops who "~s is not a real number" what)))
(define nonrational-error
(lambda (who what)
($oops who "~s is not a rational number" what)))
(define noninteger-error
(lambda (who what)
($oops who "~s is not an integer" what)))
(define nonexact-integer-error
(lambda (who what)
($oops who "~s is not an exact integer" what)))
(define noncflonum-error
(lambda (who what)
($oops who "~s is not a cflonum" what)))
(define domain-error
(lambda (who what)
($oops who "undefined for ~s" what)))
(define domain-error2
(lambda (who x y)
($oops who "undefined for values ~s and ~s" x y)))
; note: (cfl*i z) =/= (* +i z) if RP(z) == -0.0
(define cfl*i
(lambda (z)
(fl-make-rectangular (fl- (cfl-imag-part z)) (cfl-real-part z))))
; note: (cfl/i z) =/= (/ z +i) or (* -i z) if IP(z) == -0.0
(define cfl/i
(lambda (z)
(fl-make-rectangular (cfl-imag-part z) (fl- (cfl-real-part z)))))
; Some of the following is based on
; W. Kahan's "Branch Cuts for Complex Elementary Functions"
; in "The State of the Art of Numerical Analysis"
; (IMA/SIAM proceedings, 1986, pp 165-211)
; ed. by A. Iserles and M.J.D. Powell
; Kahan gives principal expressions and algorithms for several
; complex functions. The principal expressions are mathematically
; correct, but not necessarily good computationally. They
; do, however, make good test expressions for ordinary inputs.
; Steele's "Common Lisp: the Language" (second edition) was used
; to determine valid domains for some of the functions.
(define cflmagnitude
(lambda (z)
(flhypot (cfl-real-part z) (cfl-imag-part z))))
(define cflangle
(lambda (z)
(flatan2 (cfl-imag-part z) (cfl-real-part z))))
(define cfllog
; principal expression from Kahan:
; log(z) = log(|z|) + angle(z)i
; Kahan uses a different algorithm to calculate the real part.
(let ([f (lambda (x y)
; x >= y
(let ([r (fl/ y x)])
(fl+ ($fllog x) (fl* .5 (fllog1+ (fl* r r))))))]
[k (fl* .5 log2)])
(lambda (z)
(let ([x (cfl-real-part z)] [y (cfl-imag-part z)])
(fl-make-rectangular
(let ([x (flabs x)] [y (flabs y)])
(cond
[(fl> x y) (f x y)]
[(fl< x y) (f y x)]
[(fl= x y) (fl+ ($fllog x) k)]
[(infinity? x) x]
[(infinity? y) y]
[($nan? x) x]
[else y]))
(flatan2 y x))))))
(define cflsqrt
; principal expression from Kahan:
; sqrt(z) = expt(z,1/2)
; Kahan's algorithm except for the calculation of "a"
(let ([f (let ([k ($flsqrt (fl* .5 (fl+ ($flsqrt 2.0) 1.0)))])
(lambda (x y)
; sqrt(|x+yi| + |x|)/2
(cond
[(fl> x y)
(let ([r (fl/ y x)])
(fl* ($flsqrt x)
($flsqrt (fl* .5 (fl+ ($flsqrt (fl+ 1.0 (fl* r r)))
1.0)))))]
[(fl< x y)
(let ([r (fl/ x y)])
(fl* ($flsqrt y)
($flsqrt (fl* .5 (fl+ ($flsqrt (fl+ (fl* r r) 1.0))
r)))))]
[(fl= x y) (fl* ($flsqrt x) k)]
[(infinity? x) x]
[(infinity? y) y]
[($nan? x) x]
[else y])))])
(lambda (z)
(let ([x (cfl-real-part z)] [y (cfl-imag-part z)])
(let ([a (f (flabs x) (flabs y))])
(if (fl= a 0.0)
(fl-make-rectangular a y)
(let ([b (if (infinity? y) y (fl* (fl/ y a) .5))])
(if (fl< x 0.0)
(fl-make-rectangular
(flabs b)
(if (negated-flonum? y) (fl- a) a))
(fl-make-rectangular a b)))))))))
(define cflexp
; exp(a+bi) = exp(a)cos(b) + exp(a)sin(b)i
(lambda (z)
(let ([a (cfl-real-part z)] [b (cfl-imag-part z)])
(cond
; perhaps misguidedly treat x+0.0i the same as x
[(fl= b 0.0) (fl-make-rectangular ($flexp a) b)]
[(fl<= a log-omega)
(let ([e^a ($flexp a)])
(fl-make-rectangular (fl* e^a ($flcos b)) (fl* e^a ($flsin b))))]
[else (fl-make-rectangular
(let ([cosb ($flcos b)])
(if (fl< cosb 0.0)
(fl- ($flexp (fl+ a ($fllog (fl- cosb)))))
($flexp (fl+ a ($fllog cosb)))))
(let ([sinb ($flsin b)])
(if (fl< sinb 0.0)
(fl- ($flexp (fl+ a ($fllog (fl- sinb)))))
($flexp (fl+ a ($fllog sinb))))))]))))
(define cflslowsinh
; probably not the best way to handle this
(let ([f (lambda (z -z)
(cfl- (cflexp (cfl- z log2)) (cfl* .5 (cflexp -z))))])
(lambda (z)
(if (fl< (cfl-real-part z) 0.0)
(cfl- (f (cfl- z) z))
(f z (cfl- z))))))
(define cflslowcosh
; probably not the best way to handle this
(let ([f (lambda (z -z)
(cfl+ (cflexp (cfl- z log2)) (cfl* .5 (cflexp -z))))])
(lambda (z)
(if (fl< (cfl-real-part z) 0.0)
(f (cfl- z) z)
(f z (cfl- z))))))
(define cflsin
; sin(a+bi) = sin(a)cosh(b)+cos(a)sinh(b)i
(lambda (z)
(let ([a (cfl-real-part z)] [b (cfl-imag-part z)])
(if (fl<= (flabs b) acosh-omega)
(fl-make-rectangular (fl* ($flsin a) (flcosh b))
(fl* ($flcos a) (flsinh b)))
(cfl/i (cflslowsinh (cfl*i z)))))))
(define cflcos
; cos(a+bi) = cos(a)cosh(b)-sin(a)sinh(b)i
(lambda (z)
(let ([a (cfl-real-part z)] [b (cfl-imag-part z)])
(if (fl<= (flabs b) acosh-omega)
(fl-make-rectangular (fl* ($flcos a) (flcosh b))
(fl- (fl* ($flsin a) (flsinh b))))
(cflslowcosh (cfl*i z))))))
(define cfltan
; from Kahan
(lambda (z)
(cfl/i (cfltanh (cfl*i z)))))
(define cflacos
; from Kahan
; principal expression:
; 2log(sqrt((1+z)/2) + sqrt((1-z)/2)i)/i = pi/2 - asin(z)
; returns a+bi where
; a = 2atan(RP(sqrt(1-z))/RP(sqrt(1+z)))
; b = asinh(IP(conjugate(sqrt(1+z)))sqrt(1-z))
(lambda (z)
(let ([z- (cflsqrt (cfl- 1.0 z))]
[z+ (cflsqrt (cfl+ 1.0 z))])
(let ([a (cfl-real-part z-)] [b (cfl-imag-part z-)]
[c (cfl-real-part z+)] [d (cfl-imag-part z+)])
(fl-make-rectangular (fl* 2.0 ($flatan (fl/ a c)))
(flasinh (fl- (fl* b c) (fl* a d))))))))
(define cflasin
; from Kahan
; principal expression:
; asinh(iz)/i
; returns a+bi where
; a = atan(RP(z)/RP(sqrt(1-z)sqrt(1+z)))
; b = asinh(IP(conjugate(sqrt(1-z))sqrt(1+z)))
(lambda (z)
(let ([z- (cflsqrt (cfl- 1.0 z))]
[z+ (cflsqrt (cfl+ 1.0 z))])
(let ([a (cfl-real-part z-)] [b (cfl-imag-part z-)]
[c (cfl-real-part z+)] [d (cfl-imag-part z+)])
(fl-make-rectangular
($flatan (fl/ (cfl-real-part z) (fl- (fl* a c) (fl* b d))))
(flasinh (fl- (fl* a d) (fl* b c))))))))
(define cflasinh
; from Kahan
; principal expression:
; log(z + sqrt(1 + zz))
(lambda (z)
(cfl/i (cflasin (cfl*i z)))))
(define cflsinh
; sinh(a+bi) = sinh(a)cos(b)+cosh(a)sin(b)i
(lambda (z)
(let ([a (cfl-real-part z)] [b (cfl-imag-part z)])
(if (fl<= a acosh-omega)
(fl-make-rectangular (fl* (flsinh a) ($flcos b))
(fl* (flcosh a) ($flsin b)))
(cflslowsinh z)))))
(define cflcosh
; cosh(a+bi) = cosh(a)cos(b)+sinh(a)sin(b)i
(lambda (z)
(let ([a (cfl-real-part z)] [b (cfl-imag-part z)])
(if (fl<= a acosh-omega)
(fl-make-rectangular (fl* (flcosh a) ($flcos b))
(fl* (flsinh a) ($flsin b)))
(cflslowcosh z)))))
(define cfltanh
; from Kahan
(let ([theta (fl/ acosh-omega 4.0)])
(lambda (z)
(let ([x (cfl-real-part z)] [y (cfl-imag-part z)])
(let ([ax (flabs x)])
(if (fl> ax theta)
(fl-make-rectangular
(if (negated-flonum? x) -1.0 1.0)
(if (negated-flonum? y) (fl- 0.0) 0.0))
(let ([t ($fltan y)]
[s (flsinh x)])
(let ([beta (fl+ 1.0 (fl* t t))]
[ss (fl* s s)])
(let ([rho ($flsqrt (fl+ 1.0 ss))])
(if (infinity? t)
(fl-make-rectangular (fl/ rho s) (/ t))
(let ([k (/ (fl+ 1.0 (fl* beta ss)))])
(fl-make-rectangular (fl* beta rho s k)
(fl* t k)))))))))))))
(define cflacosh
; from Kahan
; principal expression:
; 2log(sqrt((z+1)/2) + sqrt((z-1)/2))
; returns a+bi where
; a = (asinh (real-part (* (conjugate (sqrt (- z 1))) (sqrt (+ z 1)))))
; b = (* 2 (atan (/ (imag-part (sqrt (- z 1))) (real-part (sqrt (+ z 1))))))
(lambda (z)
(let ([z- (cflsqrt (cfl- z 1.0))]
[z+ (cflsqrt (cfl+ z 1.0))])
(let ([a (cfl-real-part z-)] [b (cfl-imag-part z-)]
[c (cfl-real-part z+)] [d (cfl-imag-part z+)])
(fl-make-rectangular (flasinh (fl+ (fl* a c) (fl* b d)))
(fl* 2.0 ($flatan (fl/ b c))))))))
(define cflatanh
; principal expression from Kahan:
; (log(1+z) - log(1-z))/2
(let ([f (let ([theta (fl/ sqrt-omega 4.0)] [pi/2 (flatan2 1.0 0.0)])
(let ([rho (fl/ theta)] [-pi/2 (fl- pi/2)])
(lambda (x y)
; x is positive
(let ([ay (abs y)])
(cond
[(or (fl> x theta) (fl> ay theta))
; RP(1/z) +/- (pi/2)i
(fl-make-rectangular
(cond
[(fl> x ay) (fl/ (fl+ x (fl* (fl/ y x) y)))]
[(fl< x ay) (let ([r (fl/ y x)])
(fl/ r (fl+ (fl* x r) y)))]
[else (fl/ (fl+ x ay))])
(if (negated-flonum? y) pi/2 -pi/2))]
[(fl= x 1.0)
(let ([k (fl+ ay rho)])
(fl-make-rectangular
($fllog (fl/ ($flsqrt ($flsqrt (fl+ 4.0
(* y y))))
($flsqrt k)))
(fl/ (fl+ pi/2 ($flatan (fl/ k 2.0)))
(if (negated-flonum? y) 2.0 -2.0))))]
[else
(let ([1-x (fl- 1.0 x)]
[k (let ([k (fl+ ay rho)]) (fl* k k))])
(fl-make-rectangular
(fl/ (fllog1+ (fl/ (fl* 4.0 x)
(fl+ (fl* 1-x 1-x) k)))
4.0)
(fl/ (flatan2 (fl* 2.0 y)
(fl- (fl* 1-x (fl+ 1.0 x)) k))
-2.0)))])))))])
(lambda (z)
(let ([x (cfl-real-part z)] [y (cfl-imag-part z)])
(if (negated-flonum? x)
(cfl- (f (fl- x) y))
(f x (fl- y)))))))
(define cflatan
; from Kahan
; principal expression:
; arctanh(zi)/i
(lambda (z)
(cfl/i (cflatanh (cfl*i z)))))
(define exact-inexact+
(lambda (x y)
(cond
[(fixnum? x) (if (fx= x 0) y (fl+ (fixnum->flonum x) y))]
[(or (floatable? x) (fl= y 0.0)) (fl+ (inexact x) y)]
[(exceptional-flonum? y) y]
[else (inexact (+ x (exact y)))])))
(define exact-inexact-
(lambda (x y)
(cond
[(fixnum? x) (if (fx= x 0) (fl- y) (fl- (fixnum->flonum x) y))]
[(or (floatable? x) (fl= y 0.0)) (fl- (inexact x) y)]
[(exceptional-flonum? y) (fl- y)]
[else (inexact (- x (exact y)))])))
(define inexact-exact-
(lambda (x y)
(cond
[(fixnum? y) (fl- x (fixnum->flonum y))]
[(or (floatable? y) (fl= x 0.0)) (fl- x (inexact y))]
[(exceptional-flonum? x) x]
[else (inexact (- (exact x) y))])))
(define exact-inexact*
(lambda (x y)
(cond
[(fixnum? x) (if (fx= x 0) 0 (fl* (fixnum->flonum x) y))]
[(floatable? x) (fl* (inexact x) y)]
[(or (fl= y 0.0) (exceptional-flonum? y)) (if (< x 0) (fl- y) y)]
[else (inexact (* x (exact y)))])))
(define exact-inexact/
(lambda (x y)
(cond
[(fixnum? x) (fl/ (fixnum->flonum x) y)]
[(floatable? x) (fl/ (inexact x) y)]
[(or (fl= y 0.0) (exceptional-flonum? y))
(if (< x 0) (fl/ -1.0 y) (fl/ y))]
[else (inexact (/ x (exact y)))])))
(define inexact-exact/
(lambda (x y)
(cond
[(fixnum? y) (fl/ x (fixnum->flonum y))]
[(floatable? y) (fl/ x (inexact y))]
[(or (fl= x 0.0) (exceptional-flonum? x)) (if (< y 0) (fl- x) x)]
[else (inexact (/ (exact x) y))])))
(define floatable?
; x is "floatable" if it can be made inexact without overflow or underflow
(lambda (x)
(type-case x
[(fixnum?) #t]
[(bignum?) (fx<= (integer-length x) (constant max-float-exponent))]
[(ratnum?) (fx<= (constant min-float-exponent)
(fx- (integer-length (numerator x))
(integer-length (denominator x)))
(constant max-float-exponent))]
[($exactnum?) (and (floatable? (real-part x))
(floatable? (imag-part x)))]
[else #t])))
(define fixnum-floatable-wlop?
;; floatable without loss of precision
(lambda (x)
(if (<= (- (fixnum-width) 1) (constant float-mantissa-bits))
#t
(let ([hi (expt 2 (constant float-mantissa-bits))])
(fx<= (- hi) x hi)))))
(define exact-inexact-compare?
; e is an exact number, i is a flonum
; Preserve transitivity by making i exact,
; unless i is +/-infinity or a NAN, in which case any normal flonum
; is a safe representation of e for comparative purposes.
(lambda (pred? e i)
(float-type-case
[(ieee)
(if (exceptional-flonum? i)
(pred? 0.0 i)
(pred? e (exact i)))]
[else (pred? e (exact i))])))
(define exact-sqrt
; x must be exact
; returns the exact square root if it exists, otherwise an approximation
(lambda (x)
(type-case x
[(fixnum? bignum?)
(if (< x 0) (make-rectangular 0 (isqrt (abs x))) (isqrt x))]
[(ratnum?)
(/ (exact-sqrt (numerator x)) (exact-sqrt (denominator x)))]
[else
(let ([rp (exact-sqrt (/ (+ (exact-sqrt (magnitude-squared x))
(real-part x))
2))])
(make-rectangular rp (/ (imag-part x) (* 2 rp))))])))
(define ($fldiv-and-mod x y)
(if (negated-flonum? y)
(let ([q ($flfloor (fl/ x (fl- y)))])
(values (fl- q) (fl+ x (fl* y q))))
(let ([q ($flfloor (fl/ x y))])
(values q (fl- x (fl* y q))))))
(define ($fldiv x y)
(if (negated-flonum? y)
(fl- ($flfloor (fl/ x (fl- y))))
($flfloor (fl/ x y))))
(define ($flmod x y)
(if (negated-flonum? y)
(fl+ x (fl* y ($flfloor (fl/ x (fl- y)))))
(fl- x (fl* y ($flfloor (fl/ x y))))))
(define ($fldiv0-and-mod0 x y)
; there doesn't seem to be an easy way to do this...
(let-values ([(d m) ($fldiv-and-mod x y)])
(if (fl> y 0.0)
(if (fl< m (fl/ y 2.0))
(values d m)
(values (fl+ d 1.0) (fl- m y)))
(if (fl< m (fl/ y -2.0))
(values d m)
(values (fl- d 1.0) (fl+ m y))))))
(define ($fldiv0 x y)
(let-values ([(d m) ($fldiv-and-mod x y)])
(if (fl> y 0.0)
(if (fl< m (fl/ y 2.0)) d (fl+ d 1.0))
(if (fl< m (fl/ y -2.0)) d (fl- d 1.0)))))
(define ($flmod0 x y)
(let ([m ($flmod x y)])
(if (fl> y 0.0)
(if (fl< m (fl/ y 2.0)) m (fl- m y))
(if (fl< m (fl/ y -2.0)) m (fl+ m y)))))
(define ($fxdiv-and-mod x y who) ; signal error on overflow if who != #f, otherwise return bignum
(if (fx< x 0)
(if (fx< y 0)
(if (fx> x y) ; |x| < |y| => q = 0, r = x != 0
(values 1 (fx- x y))
(if (and (fx= y -1) (fx= x (most-negative-fixnum)))
(if who
($impoops who "fixnum overflow with arguments ~s and ~s" x y)
(values (- (most-negative-fixnum)) 0))
(let* ([q (fxquotient x y)] [r (fx- x (fx* y q))])
(if (fx= r 0) (values q 0) (values (fx+ q 1) (fx- r y))))))
(if (fx> x (fx- y)) ; |x| < |y| => q = 0, r = x != 0
(values -1 (fx+ x y))
(let* ([q (fxquotient x y)] [r (fx- x (fx* y q))])
(if (fx= r 0) (values q 0) (values (fx- q 1) (fx+ r y))))))
(if (or (fx< x y) (fx> (fx- x) y)) ; |x| < |y| => q = 0, r = x
(values 0 x)
(let ([q (fxquotient x y)])
(values q (fx- x (fx* y q)))))))
(define ($fxdiv x y who) ; signal error on overflow if who != #f, otherwise return bignum
(if (fx< x 0)
(if (fx< y 0)
(if (fx> x y) ; |x| < |y| => q = 0, r = x != 0
1
(if (and (fx= y -1) (fx= x (most-negative-fixnum)))
(if who
($impoops who "fixnum overflow with arguments ~s and ~s" x y)
(- (most-negative-fixnum)))
(let ([q (fxquotient x y)])
(if (fx= x (fx* y q)) q (fx+ q 1)))))
(if (fx> x (fx- y)) ; |x| < |y| => q = 0, r = x != 0
-1
(let ([q (fxquotient x y)])
(if (fx= x (fx* y q)) q (fx- q 1)))))
(if (or (fx< x y) (fx> (fx- x) y)) ; |x| < |y| => q = 0, r = x
0
(fxquotient x y))))
(define ($fxmod x y) ; no overflow possible
(if (fx< x 0)
(if (fx< y 0)
(if (fx> x y) ; |x| < |y| => q = 0, r = x != 0
(fx- x y)
(if (and (fx= y -1) (fx= x (most-negative-fixnum)))
0
(let* ([q (fxquotient x y)] [r (fx- x (fx* y q))])
(if (fx= r 0) 0 (fx- r y)))))
(if (fx> x (fx- y)) ; |x| < |y| => q = 0, r = x != 0
(fx+ x y)
(let* ([q (fxquotient x y)] [r (fx- x (fx* y q))])
(if (fx= r 0) 0 (fx+ r y)))))
(if (or (fx< x y) (fx> (fx- x) y)) ; |x| < |y| => q = 0, r = x
x
(fx- x (fx* y (fxquotient x y))))))
(define ($fxdiv0-and-mod0 x y who)
(let-values ([(d m) ($fxdiv-and-mod x y who)])
(if (fx> y 0)
(if (fx< m (if (fx= y (most-positive-fixnum))
(ash (+ (most-positive-fixnum) 1) -1)
(fxsrl (fx+ y 1) 1)))
(values d m)
(values (fx+ d 1) (fx- m y)))
(if (fx< m (if (fx= y (most-negative-fixnum))
(ash (- 1 (most-negative-fixnum)) -1)
(fxsrl (fx- 1 y) 1)))
(values d m)
(values (fx- d 1) (fx+ m y))))))
(define ($fxdiv0 x y who)
(let-values ([(d m) ($fxdiv-and-mod x y who)])
(if (fx> y 0)
(if (fx< m (if (fx= y (most-positive-fixnum))
(ash (+ (most-positive-fixnum) 1) -1)
(fxsrl (fx+ y 1) 1)))
d
(fx+ d 1))
(if (fx< m (if (fx= y (most-negative-fixnum))
(ash (- 1 (most-negative-fixnum)) -1)
(fxsrl (fx- 1 y) 1)))
d
(fx- d 1)))))
(define ($fxmod0 x y)
(let ([m ($fxmod x y)])
(if (fx> y 0)
(if (fx< m (if (fx= y (most-positive-fixnum))
(ash (+ (most-positive-fixnum) 1) -1)
(fxsrl (fx+ y 1) 1)))
m
(fx- m y))
(if (fx< m (if (fx= y (most-negative-fixnum))
(ash (- 1 (most-negative-fixnum)) -1)
(fxsrl (fx- 1 y) 1)))
m
(fx+ m y)))))
(define ($exdiv-and-mod x y) ; like $fldiv-and-mod
(if (< y 0)
(let ([q (floor (/ x (- y)))])
(values (- q) (+ x (* y q))))
(let ([q (floor (/ x y))])
(values q (- x (* y q))))))
(define ($exdiv0-and-mod0 x y)
(let-values ([(d m) ($exdiv-and-mod x y)])
(if (> y 0)
(if (< m (/ y 2))
(values d m)
(values (+ d 1) (- m y)))
(if (< m (/ y -2))
(values d m)
(values (- d 1) (+ m y))))))
(define ($exdiv x y) ; like $fldiv
(if (< y 0)
(- (floor (/ x (- y))))
(floor (/ x y))))
(define ($exmod x y) ; like $flmod
(if (< y 0)
(+ x (* y (floor (/ x (- y)))))
(- x (* y (floor (/ x y))))))
(define $sll
(lambda (who x n)
(type-case n
[(fixnum?)
(unless (fx>= n 0) ($oops who "~s is not a nonnegative exact integer" n))
(type-case x
[(fixnum?)
(let ([max-fx-shift (- (constant fixnum-bits) 1)])
(if (fx> n max-fx-shift)
(integer-ash x n)
(let ([m (#3%fxsll x n)])
(if (fx= (fxsra m n) x)
m
(integer-ash x n)))))]
[(bignum?) (integer-ash x n)]
[else (nonexact-integer-error who x)])]
[(bignum?)
(unless ($bigpositive? n) ($oops who "~s is not a nonnegative exact integer" n))
(type-case x
[(fixnum? bignum?)
(let ([k (most-positive-fixnum)])
($sll who ($sll who x k) (- n k)))]
[else (nonexact-integer-error who x)])]
[else (nonexact-integer-error who n)])))
(define $sra
(lambda (who x n)
(type-case n
[(fixnum?)
(unless (fx>= n 0) ($oops who "~s is not a nonnegative exact integer" n))
(type-case x
[(fixnum?)
(let ([max-fx-shift (- (constant fixnum-bits) 1)])
(fxsra x (if (fx> n max-fx-shift) max-fx-shift n)))]
[(bignum?) (integer-ash x (- n))]
[else (nonexact-integer-error who x)])]
[(bignum?)
(unless ($bigpositive? n) ($oops who "~s is not a nonnegative exact integer" n))
(type-case x
[(fixnum? bignum?)
(let ([k (most-positive-fixnum)])
($sra who ($sra who x k) (- n k)))]
[else (nonexact-integer-error who x)])]
[else (nonexact-integer-error who n)])))
(define $negate
(lambda (who x)
(type-case x
[(fixnum?)
(if (fx= x (most-negative-fixnum))
(let-syntax ([a (lambda (x) (- (constant most-negative-fixnum)))]) a)
(fx- x))]
[(bignum?) (big-negate x)]
[(flonum?) (fl- x)]
[(ratnum?) (integer/ (- ($ratio-numerator x)) ($ratio-denominator x))]
[($exactnum? $inexactnum?) (make-rectangular (- (real-part x)) (- (imag-part x)))]
[else (nonnumber-error who x)])))
(set! integer?
(lambda (x)
(type-case x
[(fixnum? bignum?) #t]
[(flonum?) ($flinteger? x)]
[else #f])))
(set! integer-valued?
(lambda (x)
(type-case x
[(fixnum? bignum?) #t]
[(flonum?) ($flinteger? x)]
[($inexactnum?)
(and (fl= ($inexactnum-imag-part x) 0.0)
($flinteger? ($inexactnum-real-part x)))]
[else #f])))
(set! rational?
(lambda (x)
(type-case x
[(fixnum? bignum? ratnum?) #t]
[(flonum?) (not (exceptional-flonum? x))]
[else #f])))
(set! rational-valued?
(lambda (x)
(type-case x
[(fixnum? bignum? ratnum?) #t]
[(flonum?) (not (exceptional-flonum? x))]
[($inexactnum?)
(and (fl= ($inexactnum-imag-part x) 0.0)
(not (exceptional-flonum? ($inexactnum-real-part x))))]
[else #f])))
(set! real?
(lambda (x)
(type-case x
[(fixnum? flonum? bignum? ratnum?) #t]
[else #f])))
(set! real-valued?
(lambda (x)
(type-case x
[(fixnum? flonum? bignum? ratnum?) #t]
[($inexactnum?) (fl= ($inexactnum-imag-part x) 0.0)]
[else #f])))
(set! complex?
; same as number?
(lambda (x)
(type-case x
[(fixnum? cflonum? bignum? ratnum? $exactnum?) #t]
[else #f])))
(set! number?
; same as complex?
(lambda (x)
(type-case x
[(fixnum? cflonum? bignum? ratnum? $exactnum?) #t]
[else #f])))
(set! exact?
(lambda (x)
(type-case x
[(fixnum?) #t]
[(cflonum?) #f]
[(bignum? ratnum? $exactnum?) #t]
[else (nonnumber-error 'exact? x)])))
(set! inexact?
(lambda (x)
(type-case x
[(cflonum?) #t]
[(fixnum? bignum? ratnum? $exactnum?) #f]
[else (nonnumber-error 'inexact? x)])))
(set-who! numerator
(lambda (x)
(type-case x
[(ratnum?) ($ratio-numerator x)]
[(fixnum? bignum?) x]
[(flonum?)
(cond
[(exceptional-flonum? x) (nonrational-error who x)]
[($flinteger-or-inf? x) x]
[else (inexact (numerator (exact x)))])]
[else (nonrational-error who x)])))
(set-who! denominator
(lambda (x)
(type-case x
[(ratnum?) ($ratio-denominator x)]
[(fixnum? bignum?) 1]
[(flonum?)
(cond
[(exceptional-flonum? x) (nonrational-error who x)]
[($flinteger-or-inf? x) 1.0]
[else (inexact (denominator (exact x)))])]
[else (nonrational-error who x)])))
(set! real-part
(lambda (z)
(type-case z
[($inexactnum?) ($inexactnum-real-part z)]
[($exactnum?) ($exactnum-real-part z)]
[(flonum? fixnum? bignum? ratnum?) z]
[else (noncomplex-error 'real-part z)])))
(set! imag-part
(lambda (z)
(type-case z
[($inexactnum?) ($inexactnum-imag-part z)]
[($exactnum?) ($exactnum-imag-part z)]
[(flonum?) 0]
[(fixnum? bignum? ratnum?) 0]
[else (noncomplex-error 'imag-part z)])))
(set! modulo
(lambda (x y)
(unless (integer? x) (noninteger-error 'modulo x))
(unless (integer? y) (noninteger-error 'modulo y))
(when (= y 0) (domain-error 'modulo y))
(let ([r (remainder x y)])
(if (if (negative? y) (positive? r) (negative? r))
(+ r y)
r))))
(set! expt-mod
; (modulo (expt x y) z)
(lambda (x y z)
(unless (integer? x)
($oops 'expt-mod "~s is not an integer" x))
(unless (and (integer? y) (not (negative? y)))
($oops 'expt-mod "~s is not a nonnegative integer" y))
(unless (and (integer? z) (not (zero? z)))
($oops 'expt-mod "~s is not a nonzero integer" z))
(if (= y 0)
(modulo 1 z)
(do ([w 1 (if (even? y) w (remainder (* w b) z))]
[y y (quotient y 2)]
[b (remainder x z) (remainder (* b b) z)])
((= y 1) (modulo (* w b) z))))))
(set-who! negative?
(lambda (x)
(type-case x
[(fixnum?) (fx< x 0)]
[(flonum?) (fl< x 0.0)]
[(bignum?) (not ($bigpositive? x))]
[(ratnum?) (< ($ratio-numerator x) 0)]
[else (nonreal-error who x)])))
(set-who! nonnegative?
(lambda (x)
(type-case x
[(fixnum?) (fx>= x 0)]
[(flonum?) (fl>= x 0.0)]
[(bignum?) ($bigpositive? x)]
[(ratnum?) (>= ($ratio-numerator x) 0)]
[else (nonreal-error who x)])))
(set-who! positive?
(lambda (x)
(type-case x
[(fixnum?) (fx> x 0)]
[(flonum?) (fl> x 0.0)]
[(bignum?) ($bigpositive? x)]
[(ratnum?) (> ($ratio-numerator x) 0)]
[else (nonreal-error who x)])))
(set-who! nonpositive?
(lambda (x)
(type-case x
[(fixnum?) (fx<= x 0)]
[(flonum?) (fl<= x 0.0)]
[(bignum?) (not ($bigpositive? x))]
[(ratnum?) (<= ($ratio-numerator x) 0)]
[else (nonreal-error who x)])))
(set-who! min
(rec min
(case-lambda
[(x y)
(type-case x
[(flonum?)
(type-case y
[(flonum?) (if (or (fl< x y) ($nan? x)) x y)]
[(fixnum? bignum? ratnum?) (min x (inexact y))]
[else (nonreal-error who y)])]
[(fixnum?)
(type-case y
[(fixnum?) (if (fx< x y) x y)]
[(bignum? ratnum?) (if (< x y) x y)]
[(flonum?) (min (inexact x) y)]
[else (nonreal-error who y)])]
[(bignum? ratnum?)
(type-case y
[(fixnum? bignum? ratnum?) (if (< x y) x y)]
[(flonum?) (min (inexact x) y)]
[else (nonreal-error who y)])]
[else (nonreal-error who x)])]
[(x) (if (real? x) x (nonreal-error who x))]
[(x y . z)
(let loop ([x (min x y)] [z z])
(if (null? z)
x
(loop (min x (car z)) (cdr z))))])))
(set-who! max
(rec max
(case-lambda
[(x y)
(type-case x
[(flonum?)
(type-case y
[(flonum?) (if (or (fl> x y) ($nan? x)) x y)]
[(fixnum? bignum? ratnum?) (max x (inexact y))]
[else (nonreal-error who y)])]
[(fixnum?)
(type-case y
[(fixnum?) (if (fx> x y) x y)]
[(bignum? ratnum?) (if (> x y) x y)]
[(flonum?) (max (inexact x) y)]
[else (nonreal-error who y)])]
[(bignum? ratnum?)
(type-case y
[(fixnum? bignum? ratnum?) (if (> x y) x y)]
[(flonum?) (max (inexact x) y)]
[else (nonreal-error who y)])]
[else (nonreal-error who x)])]
[(x) (if (real? x) x (nonreal-error who x))]
[(x y . z)
(let loop ([x (max x y)] [z z])
(if (null? z)
x
(loop (max x (car z)) (cdr z))))])))
(let ()
(define exgcd
(foreign-procedure "(cs)gcd"
(scheme-object scheme-object)
scheme-object))
(define (exlcm x1 x2)
(if (or (eqv? x1 0) (eqv? x2 0))
0
(* (abs x1) (/ (abs x2) (exgcd x1 x2)))))
(set-who! gcd
(rec gcd
(case-lambda
[() 0]
[(x1) (gcd x1 x1)]
[(x1 x2)
(if (and (or (fixnum? x1) (bignum? x1))
(or (fixnum? x2) (bignum? x2)))
(exgcd x1 x2)
(begin
(unless (integer? x1) (noninteger-error who x1))
(unless (integer? x2) (noninteger-error who x2))
(inexact (exgcd (exact x1) (exact x2)))))]
[(x1 x2 . xr)
(let f ([x1 x1] [x2 x2] [xr xr])
(let ([x1 (gcd x1 x2)])
(if (null? xr) x1 (f x1 (car xr) (cdr xr)))))])))
(set-who! lcm
(rec lcm
(case-lambda
[() 1]
[(x) (lcm x x)]
[(x1 x2)
(if (and (or (fixnum? x1) (bignum? x1))
(or (fixnum? x2) (bignum? x2)))
(exlcm x1 x2)
(begin
(unless (integer? x1) (noninteger-error who x1))
(unless (integer? x2) (noninteger-error who x2))
(inexact (exlcm (exact x1) (exact x2)))))]
[(x1 x2 . xr)
(let f ([x1 x1] [x2 x2] [xr xr])
(let ([x1 (lcm x1 x2)])
(if (null? xr) x1 (f x1 (car xr) (cdr xr)))))]))))
(let ()
(define convert-to-inexact
(lambda (z who)
(type-case z
[(fixnum?) (fixnum->flonum z)]
[(bignum? ratnum?) (float z)]
[($exactnum?)
(fl-make-rectangular (inexact ($exactnum-real-part z))
(inexact ($exactnum-imag-part z)))]
[(cflonum?) z]
[else (nonnumber-error who z)])))
(set-who! inexact (lambda (z) (convert-to-inexact z who)))
(set-who! exact->inexact (lambda (z) (convert-to-inexact z who))))
(let ()
(define convert-to-exact
(lambda (z who)
(type-case z
[(flonum?)
(when (exceptional-flonum? z)
($oops 'exact "no exact representation for ~s" z))
(let ([dx (decode-float z)])
(let ([mantissa (* (vector-ref dx 0) (vector-ref dx 2))]
[exponent (vector-ref dx 1)])
(if (fx< exponent 0)
(/ mantissa (ash 1 (fx- exponent)))
(* mantissa (ash 1 exponent)))))]
[($inexactnum?)
(make-rectangular
(exact ($inexactnum-real-part z))
(exact ($inexactnum-imag-part z)))]
[(fixnum? bignum? ratnum? $exactnum?) z]
[else (nonnumber-error who z)])))
(set-who! exact (lambda (z) (convert-to-exact z who)))
(set-who! inexact->exact (lambda (z) (convert-to-exact z who))))
(set! rationalize
; Alan Bawden's algorithm
(letrec
([rat1 ; x < y
(lambda (x y)
(cond
[(> x 0) (rat2 x y)]
[(< y 0) (- (rat2 (- y) (- x)))]
[else (if (and (exact? x) (exact? y)) 0 0.0)]))]
[rat2 ; 0 < x < y
(lambda (x y)
(let ([fx (floor x)] [fy (floor y)])
(cond
[(= fx x) fx]
[(= fx fy) (+ fx (/ (rat2 (/ (- y fy)) (/ (- x fx)))))]
[else (+ fx 1)])))])
(lambda (x e)
(unless (real? x) (nonreal-error 'rationalize x))
(unless (real? e) (nonreal-error 'rationalize e))
(let ([x (- x e)] [y (+ x e)])
(cond
[(< x y) (rat1 x y)]
[(< y x) (rat1 y x)]
[else x])))))
(set! abs
(lambda (z)
(type-case z
[(fixnum?) (if (fx< z 0) (if (fx= z (most-negative-fixnum)) (- (most-negative-fixnum)) (fx- z)) z)]
[(flonum?) (flabs z)]
[(bignum?) (if ($bigpositive? z) z (- z))]
[(ratnum?) (if (< z 0) (- z) z)]
[else (nonreal-error 'abs z)])))
(set! magnitude
(lambda (z)
(type-case z
[(flonum?) (flabs z)]
[(fixnum?) (if (fx< z 0) (- z) z)]
[($inexactnum?) (cflmagnitude z)]
[($exactnum?)
(let ([x ($exactnum-real-part z)] [y ($exactnum-imag-part z)])
(sqrt (+ (* x x) (* y y))))]
[(bignum?) (if ($bigpositive? z) z (- z))]
[(ratnum?) (if (< z 0) (- z) z)]
[else (noncomplex-error 'magnitude z)])))
(set! angle
(lambda (z)
(type-case z
[(flonum?) (if (negated-flonum? z) pi 0.0)]
[($inexactnum?) (cflangle z)]
[(fixnum? bignum? ratnum?)
(cond
[(< z 0) pi]
[(> z 0) 0]
[else (domain-error 'angle z)])]
[($exactnum?)
; use single argument atan to avoid precision loss
; cases from Kahan
(let ([x ($exactnum-real-part z)] [y ($exactnum-imag-part z)])
(cond
[(> (abs y) (abs x))
(- (fl* pi (if (< y 0) -.5 .5)) (atan (/ x y)))]
[(< x 0)
(if (< y 0)
(- (atan (/ y x)) pi)
(+ (atan (/ y x)) pi))]
[else (atan (/ y x))]))]
[else (noncomplex-error 'angle z)])))
(set-who! make-rectangular
(lambda (x y)
(type-case y
[(flonum?)
(fl-make-rectangular
(type-case x
[(flonum?) x]
[(fixnum? bignum? ratnum?) (inexact x)]
[else (nonreal-error who x)])
y)]
[(fixnum? bignum? ratnum?)
(if (eq? y 0)
(if (real? x) x (nonreal-error who x))
(type-case x
[(fixnum? bignum? ratnum?) ($make-exactnum x y)]
[(flonum?) (fl-make-rectangular x (inexact y))]
[else (nonreal-error who x)]))]
[else (nonreal-error who y)])))
(set-who! make-polar
(lambda (x y)
(unless (real? x) (nonreal-error 'make-polar x))
(unless (real? y) (nonreal-error 'make-polar y))
(cond
[(eq? y 0) x]
[(eq? x 0) 0]
[else (make-rectangular (* x (cos y)) (* x (sin y)))])))
(set! log
(rec log
(case-lambda
[(x)
(type-case x
[(flonum?)
(if (negated-flonum? x)
(fl-make-rectangular ($fllog (fl- x)) pi)
($fllog x))]
[($inexactnum?) (cfllog x)]
[(fixnum?)
(cond
[(fx> x 1) ($fllog (fixnum->flonum x))]
[(fx= x 1) 0]
[(fx< x 0) (make-rectangular (log (- x)) pi)]
[else (domain-error 'log x)])]
[(bignum?)
(let ([len (integer-length x)])
(if (fx<= len (constant max-float-exponent))
(log (inexact x))
(+ (* len log2) (log (inexact (/ x (ash 1 len)))))))]
[(ratnum?)
(if (floatable? x)
(log (inexact x))
(- (log (numerator x)) (log (denominator x))))]
[($exactnum?)
(make-rectangular
(/ (log (magnitude-squared x)) 2)
(angle x))]
[else (nonnumber-error 'log x)])]
[(x y) (/ (log x) (log y))])))
(define-trig-op exp $flexp cflexp 1)
(define-trig-op sin $flsin cflsin 0)
(define-trig-op cos $flcos cflcos 1)
(define-trig-op tan $fltan cfltan 0)
(set! asin
(lambda (x)
(type-case x
[(flonum?)
; make sure NANs go the "$flasin" route
(if (or (fl< x -1.0) (fl> x 1.0))
(cflasin x)
($flasin x))]
[($inexactnum?) (cflasin x)]
[(fixnum?) (if (fx= x 0) 0 (asin (fixnum->flonum x)))]
[(bignum? ratnum? $exactnum?) (asin (inexact x))]
[else (nonnumber-error 'asin x)])))
(set! acos
(lambda (x)
(type-case x
[(flonum?)
; make sure NANs go the "$flacos" route
(if (or (fl< x -1.0) (fl> x 1.0))
(cflacos x)
($flacos x))]
[($inexactnum?) (cflacos x)]
[(fixnum?) (if (fx= x 1) 0 (acos (fixnum->flonum x)))]
[(bignum? ratnum? $exactnum?) (acos (inexact x))]
[else (nonnumber-error 'acos x)])))
(set! atan
(case-lambda
[(x)
(type-case x
[(flonum?) ($flatan x)]
[($inexactnum?) (cflatan x)]
[(fixnum?) (if (fx= x 0) 0 (atan (fixnum->flonum x)))]
[(bignum? ratnum?) (atan (inexact x))]
[($exactnum?)
(when (or (= x +i) (= x -i)) (domain-error 'atan x))
(atan (inexact x))]
[else (nonnumber-error 'atan x)])]
[(y x)
(cond
[(and (flonum? y) (flonum? x))
(flatan2 y x)]
[(and (fixnum? y) (fixnum? x))
(if (fx= y 0)
(cond
[(fx> x 0) 0]
[(fx< x 0) pi]
[else (domain-error2 'atan2 y x)])
(flatan2 (fixnum->flonum y) (fixnum->flonum x)))]
[else
(unless (real? y) (nonreal-error 'atan y))
(unless (real? x) (nonreal-error 'atan x))
(angle (make-rectangular x y))])]))
(define-trig-op sinh flsinh cflsinh 0)
(define-trig-op cosh flcosh cflcosh 1)
(define-trig-op tanh fltanh cfltanh 0)
(define-trig-op asinh flasinh cflasinh 0)
(set! acosh
(lambda (x)
(type-case x
[(flonum?)
; make sure NANs go the "flacosh" route
(if (fl< x 1.0) (cflacosh x) (flacosh x))]
[($inexactnum?) (cflacosh x)]
[(fixnum?) (if (fx= x 1) 0 (acosh (fixnum->flonum x)))]
[(bignum? ratnum? $exactnum?) (acosh (inexact x))]
[else (nonnumber-error 'acosh x)])))
(set! atanh
(lambda (x)
(type-case x
[(flonum?)
; make sure NANs go the "flatanh" route
(if (or (fl< x -1.0) (fl> x 1.0))
(cflatanh x)
(flatanh x))]
[($inexactnum?) (cflatanh x)]
[(fixnum?)
(cond
[(or (fx> x 1) (fx< x -1)) (atanh (fixnum->flonum x))]
[(fx= x 0) 0]
[else (domain-error 'atan x)])]
[(bignum? ratnum? $exactnum?) (atanh (inexact x))]
[else (nonnumber-error 'atanh x)])))
; exceptional cases from Steele(CLtL), page 311
(set! expt
(lambda (x y)
(type-case y
[(fixnum? bignum?)
(cond
[(and (eq? y 0) (number? x)) 1]
[(eq? x 0)
(if (< y 0)
($impoops 'expt "undefined for values ~s and ~s" x y)
0)]
[(eq? x 1) 1]
[(eq? x 2) (if (< y 0) (/ (ash 1 (- y))) (ash 1 y))]
[(and (flonum? x) (floatable? y)) ($flexpt x (inexact y))]
[(and ($inexactnum? x) (floatable? y)) (exp (* y (log x)))]
[(not (number? x)) (nonnumber-error 'expt x)]
[(ratnum? x)
(if (< y 0)
(let ([y (- y)])
(/ (expt (denominator x) y) (expt (numerator x) y)))
(/ (expt (numerator x) y) (expt (denominator x) y)))]
[else
(let ()
(define (f x n)
(if (eq? n 1)
x
(let ([s (f x (ash n -1))])
(if (even? n) (* s s) (* (* s s) x)))))
(if (< y 0)
(if (or (fixnum? x) (bignum? x))
(/ (f x (- y)))
(f (/ x) (- y)))
(f x y)))])]
[(flonum?)
(type-case x
[(flonum?)
(if (and (fl< x 0.0) (not ($flinteger-or-inf? y)))
(exp (* y (log x)))
($flexpt x y))]
[($inexactnum? $exactnum?) (exp (* y (log x)))]
[(fixnum? bignum? ratnum?)
(if (floatable? x)
(expt (inexact x) y)
(exp (* y (log x))))]
[else (nonnumber-error 'expt x)])]
[($inexactnum?)
(if (or (eq? x 0) (and (flonum? x) (= x 0.0)))
0.0
(begin
(unless (number? x) (nonnumber-error 'expt x))
(exp (* y (log x)))))]
[(ratnum? $exactnum?)
(unless (number? x) (nonnumber-error 'expt x))
(cond
[(eq? x 0)
(if (> (real-part y) 0)
0
($impoops 'expt "undefined for values ~s and ~s" x y))]
[(floatable? y) (expt x (inexact y))]
[else (exp (* y (log x)))])]
[else (nonnumber-error 'expt y)])))
(set! sqrt
(lambda (x)
(type-case x
[(flonum?)
(if (and (negated-flonum? x) (not ($nan? x)))
(fl-make-rectangular 0.0 ($flsqrt (flabs x)))
($flsqrt x))]
[($inexactnum?) (cflsqrt x)]
[(fixnum? bignum? ratnum? $exactnum?)
(let ([y (exact-sqrt x)])
(let ([yy (* y y)])
(cond
[(= yy x) y]
[(floatable? x) (sqrt (inexact x))]
[else (* y (sqrt (inexact (/ x yy))))])))]
[else (nonnumber-error 'sqrt x)])))
(set! isqrt
; Based on code credited to "boyland@aspen.Berkeley.EDU" by
; Akira Kurihara (d34676@tansei.cc.u-tokyo.ac.jp)
(lambda (n)
(cond
[(and (or (fixnum? n) (bignum? n)) (>= n 0))
(let isqrt ([n n])
(cond
[(>= n 16) ; ensures k > 0
(let ([a1 (let ([k (ash (- (integer-length n) 1) -2)])
(ash (isqrt (ash n (- (ash k 1)))) k))])
(let ([q&r ($quotient-remainder n a1)])
(let ([a2 (car q&r)])
(let ([a3 (ash (+ a1 a2) -1)])
(if (odd? a2)
a3
(let ([d (- a3 a1)])
(if (> (* d d) (cdr q&r))
(- a3 1)
a3)))))))]
[(>= n 9) 3]
[(>= n 4) 2]
[(>= n 1) 1]
[else 0]))]
[(and (integer? n) (>= n 0)) (floor (sqrt n))]
[else ($oops 'isqrt "~s is not a nonnegative integer" n)])))
(set-who! floor
(lambda (x)
(type-case x
[(fixnum? bignum?) x]
[(flonum?) ($flfloor x)]
[(ratnum?)
(let ([y (quotient ($ratio-numerator x) ($ratio-denominator x))])
(if (< x 0) (- y 1) y))]
[else (nonreal-error who x)])))
(set-who! ceiling
(lambda (x)
(type-case x
[(fixnum? bignum?) x]
[(flonum?) ($flceiling x)]
[(ratnum?)
(let ([y (quotient ($ratio-numerator x) ($ratio-denominator x))])
(if (< x 0) y (+ y 1)))]
[else (nonreal-error who x)])))
(set-who! truncate
(lambda (x)
(type-case x
[(fixnum? bignum?) x]
[(flonum?) (if (negated-flonum? x) (fl- ($flfloor (flabs x))) ($flfloor x))]
[(ratnum?) (quotient ($ratio-numerator x) ($ratio-denominator x))]
[else (nonreal-error who x)])))
(set-who! quotient
(let ([f (lambda (x y) (truncate (/ x y)))])
(lambda (x y)
(type-case y
[(fixnum?)
(when (fx= y 0) (domain-error who y))
(cond
[(fx= y 1) (unless (integer? x) (noninteger-error who x)) x]
[(fx= y -1) (unless (integer? x) (noninteger-error who x)) ($negate who x)]
[else
(type-case x
[(fixnum?) (if (and (fx= y -1) (fx= x (most-negative-fixnum)))
(- (most-negative-fixnum))
(fxquotient x y))]
[(bignum?) (intquotient x y)]
[else
(unless (integer? x) (noninteger-error who x))
(f x y)])])]
[(bignum?)
(type-case x
[(fixnum? bignum?) (intquotient x y)]
[else
(unless (integer? x) (noninteger-error who x))
(f x y)])]
[else
(unless (integer? y) (noninteger-error who y))
(unless (integer? x) (noninteger-error who x))
(when (= y 0) (domain-error who y))
(f x y)]))))
(set-who! div-and-mod
(lambda (x y)
(type-case y
[(fixnum?)
(type-case x
[(fixnum?)
(when (fx= y 0) (domain-error who y))
($fxdiv-and-mod x y #f)]
[(flonum?) ($fldiv-and-mod x (fixnum->flonum y))]
[(bignum?)
(cond
[(fx= y 1) (values x 0)]
[(fx= y -1) (values (big-negate x) 0)]
[else
(when (fx= y 0) (domain-error who y))
(let ([q.r (intquotient-remainder x y)])
(if ($bigpositive? x)
(values (car q.r) (cdr q.r))
(if (eq? (cdr q.r) 0)
(values (car q.r) 0)
(if (fx< y 0)
(values (+ (car q.r) 1) (fx- (cdr q.r) y))
(values (- (car q.r) 1) (fx+ (cdr q.r) y))))))])]
[(ratnum?)
(when (fx= y 0) (domain-error who y))
($exdiv-and-mod x y)]
[else (domain-error who x)])]
[(flonum?)
(type-case x
[(fixnum?) ($fldiv-and-mod (fixnum->flonum x) y)]
[(flonum?) ($fldiv-and-mod x y)]
[(bignum? ratnum?) ($fldiv-and-mod (real->flonum x) y)]
[else (domain-error who x)])]
[(bignum?)
(type-case x
[(fixnum?) ; know |x| < |y| => q = 0, r = x
(if (fx< x 0)
(if ($bigpositive? y) (values -1 (+ x y)) (values 1 (- x y)))
(values 0 x))]
[(flonum?) ($fldiv-and-mod x (real->flonum y))]
[(bignum?)
(let ([q.r (intquotient-remainder x y)])
(if ($bigpositive? x)
(values (car q.r) (cdr q.r))
(if (eq? (cdr q.r) 0)
(values (car q.r) 0)
(if ($bigpositive? y)
(values (- (car q.r) 1) (+ (cdr q.r) y))
(values (+ (car q.r) 1) (- (cdr q.r) y))))))]
[(ratnum?) ($exdiv-and-mod x y)]
[else (domain-error who x)])]
[(ratnum?)
(type-case x
[(fixnum? bignum? ratnum?) ($exdiv-and-mod x y)]
[(flonum?) ($fldiv-and-mod x (real->flonum y))]
[else (domain-error who x)])]
[else (domain-error who y)])))
(set-who! div
(lambda (x y)
(type-case y
[(fixnum?)
(type-case x
[(fixnum?)
(when (fx= y 0) (domain-error who y))
($fxdiv x y #f)]
[(flonum?) ($fldiv x (fixnum->flonum y))]
[(bignum?)
(when (fx= y 0) (domain-error who y))
(cond
[(fx= y 1) x]
[(fx= y -1) (big-negate x)]
[else
(if ($bigpositive? x)
(intquotient x y)
(let ([q.r (intquotient-remainder x y)])
(if (eq? (cdr q.r) 0)
(car q.r)
(if (fx< y 0)
(+ (car q.r) 1)
(- (car q.r) 1)))))])]
[(ratnum?)
(when (fx= y 0) (domain-error who y))
($exdiv x y)]
[else (domain-error who x)])]
[(flonum?)
(type-case x
[(fixnum?) ($fldiv (fixnum->flonum x) y)]
[(flonum?) ($fldiv x y)]
[(bignum? ratnum?) ($fldiv (real->flonum x) y)]
[else (domain-error who x)])]
[(bignum?)
(type-case x
[(fixnum?) ; know |x| < |y| => q = 0, r = x
(if (fx< x 0) (if ($bigpositive? y) -1 1) 0)]
[(flonum?) ($fldiv x (real->flonum y))]
[(bignum?)
(if ($bigpositive? x)
(intquotient x y)
(let ([q.r (intquotient-remainder x y)])
(if (eq? (cdr q.r) 0)
(car q.r)
(if ($bigpositive? y)
(- (car q.r) 1)
(+ (car q.r) 1)))))]
[(ratnum?) ($exdiv x y)]
[else (domain-error who x)])]
[(ratnum?)
(type-case x
[(fixnum? bignum? ratnum?) ($exdiv x y)]
[(flonum?) ($fldiv x (real->flonum y))]
[else (domain-error who x)])]
[else (domain-error who y)])))
(set-who! mod
(lambda (x y)
(type-case y
[(fixnum?)
(type-case x
[(fixnum?)
(when (fx= y 0) (domain-error who y))
($fxmod x y)]
[(flonum?) ($flmod x (fixnum->flonum y))]
[(bignum?)
(when (fx= y 0) (domain-error who y))
(cond
[(or (fx= y 1) (fx= y -1)) 0]
[else
(if ($bigpositive? x)
(intremainder x y)
(let ([q.r (intquotient-remainder x y)])
(if (eq? (cdr q.r) 0)
0
(if (fx< y 0)
(fx- (cdr q.r) y)
(fx+ (cdr q.r) y)))))])]
[(ratnum?)
(when (fx= y 0) (domain-error who y))
($exmod x y)]
[else (domain-error who x)])]
[(flonum?)
(type-case x
[(fixnum?) ($flmod (fixnum->flonum x) y)]
[(flonum?) ($flmod x y)]
[(bignum? ratnum?) ($flmod (real->flonum x) y)]
[else (domain-error who x)])]
[(bignum?)
(type-case x
[(fixnum?) ; know |x| < |y| => q = 0, r = x
(if (fx< x 0) (if ($bigpositive? y) (+ x y) (- x y)) x)]
[(flonum?) ($flmod x (real->flonum y))]
[(bignum?)
(if ($bigpositive? x)
(intremainder x y)
(let ([q.r (intquotient-remainder x y)])
(if (eq? (cdr q.r) 0)
0
(if ($bigpositive? y)
(+ (cdr q.r) y)
(- (cdr q.r) y)))))]
[(ratnum?) ($exmod x y)]
[else (domain-error who x)])]
[(ratnum?)
(type-case x
[(fixnum? bignum? ratnum?) ($exmod x y)]
[(flonum?) ($flmod x (real->flonum y))]
[else (domain-error who x)])]
[else (domain-error who y)])))
(set-who! div0-and-mod0
(lambda (x y)
(type-case y
[(fixnum?)
(type-case x
[(fixnum?)
(when (fx= y 0) (domain-error who y))
($fxdiv0-and-mod0 x y #f)]
[(flonum?) ($fldiv0-and-mod0 x (fixnum->flonum y))]
[(bignum?)
(cond
[(fx= y 1) (values x 0)]
[(fx= y -1) (values (big-negate x) 0)]
[else
(when (fx= y 0) (domain-error who y))
($exdiv0-and-mod0 x y)])]
[(ratnum?)
(when (fx= y 0) (domain-error who y))
($exdiv0-and-mod0 x y)]
[else (domain-error who x)])]
[(flonum?)
(type-case x
[(fixnum?) ($fldiv0-and-mod0 (fixnum->flonum x) y)]
[(flonum?) ($fldiv0-and-mod0 x y)]
[(bignum? ratnum?) ($fldiv0-and-mod0 (real->flonum x) y)]
[else (domain-error who x)])]
[(bignum?)
(type-case x
[(fixnum? bignum? ratnum?) ($exdiv0-and-mod0 x y)]
[(flonum?) ($fldiv0-and-mod0 x (real->flonum y))]
[else (domain-error who x)])]
[(ratnum?)
(type-case x
[(fixnum? bignum? ratnum?) ($exdiv0-and-mod0 x y)]
[(flonum?) ($fldiv0-and-mod0 x (real->flonum y))]
[else (domain-error who x)])]
[else (domain-error who y)])))
(set-who! div0
(lambda (x y)
(define (exdiv0 x y)
(let-values ([(d m) ($exdiv-and-mod x y)])
(if (> y 0)
(if (< m (/ y 2)) d (+ d 1))
(if (< m (/ y -2)) d (- d 1)))))
(type-case y
[(fixnum?)
(type-case x
[(fixnum?)
(when (fx= y 0) (domain-error who y))
($fxdiv0 x y #f)]
[(flonum?) ($fldiv0 x (fixnum->flonum y))]
[(bignum?)
(cond
[(fx= y 1) x]
[(fx= y -1) (big-negate x)]
[else
(when (fx= y 0) (domain-error who y))
(exdiv0 x y)])]
[(ratnum?)
(when (fx= y 0) (domain-error who y))
(exdiv0 x y)]
[else (domain-error who x)])]
[(flonum?)
(type-case x
[(fixnum?) ($fldiv0 (fixnum->flonum x) y)]
[(flonum?) ($fldiv0 x y)]
[(bignum? ratnum?) ($fldiv0 (real->flonum x) y)]
[else (domain-error who x)])]
[(bignum?)
(type-case x
[(fixnum? bignum? ratnum?) (exdiv0 x y)]
[(flonum?) ($fldiv0 x (real->flonum y))]
[else (domain-error who x)])]
[(ratnum?)
(type-case x
[(fixnum? bignum? ratnum?) (exdiv0 x y)]
[(flonum?) ($fldiv0 x (real->flonum y))]
[else (domain-error who x)])]
[else (domain-error who y)])))
(set-who! mod0
(lambda (x y)
(define (exmod0 x y)
(let ([m ($exmod x y)])
(if (> y 0)
(if (< m (/ y 2)) m (- m y))
(if (< m (/ y -2)) m (+ m y)))))
(type-case y
[(fixnum?)
(type-case x
[(fixnum?)
(when (fx= y 0) (domain-error who y))
($fxmod0 x y)]
[(flonum?) ($flmod0 x (fixnum->flonum y))]
[(bignum?)
(cond
[(or (fx= y 1) (fx= y -1)) 0]
[else
(when (fx= y 0) (domain-error who y))
(exmod0 x y)])]
[(ratnum?)
(when (fx= y 0) (domain-error who y))
(exmod0 x y)]
[else (domain-error who x)])]
[(flonum?)
(type-case x
[(fixnum?) ($flmod0 (fixnum->flonum x) y)]
[(flonum?) ($flmod0 x y)]
[(bignum? ratnum?) ($flmod0 (real->flonum x) y)]
[else (domain-error who x)])]
[(bignum?)
(type-case x
[(fixnum? bignum? ratnum?) (exmod0 x y)]
[(flonum?) ($flmod0 x (real->flonum y))]
[else (domain-error who x)])]
[(ratnum?)
(type-case x
[(fixnum? bignum? ratnum?) (exmod0 x y)]
[(flonum?) ($flmod0 x (real->flonum y))]
[else (domain-error who x)])]
[else (domain-error who y)])))
(set-who! remainder
(let* ([fmod (cflop2 "(cs)mod")]
[f (lambda (x y)
(cond
[(eqv? x 0) 0]
[else
(let ([r (fmod (real->flonum x) (real->flonum y))])
(if (fl= r 0.0)
;; Always return positive 0.0 --- not sure why,
;; but Racket and other Schemes seem to agree
0.0
r))]))])
(lambda (x y)
(type-case y
[(fixnum?)
(when (fx= y 0) (domain-error who y))
(cond
[(or (fx= y 1) (fx= y -1)) (unless (integer? x) (noninteger-error who x)) 0]
[else
(type-case x
[(fixnum?) (fxremainder x y)]
[(bignum?) (intremainder x y)]
[else
(unless (integer? x) (noninteger-error who x))
(f x y)])])]
[(bignum?)
(type-case x
[(fixnum? bignum?) (intremainder x y)]
[else
(unless (integer? x) (noninteger-error who x))
(f x y)])]
[else
(unless (integer? y) (noninteger-error who y))
(unless (integer? x) (noninteger-error who x))
(when (= y 0) (domain-error who y))
(f x y)]))))
(set-who! even?
(lambda (x)
(type-case x
[(fixnum?) (fxeven? x)]
[(bignum?) (not (bigodd? x))]
[(flonum?)
(when (exceptional-flonum? x) (noninteger-error who x))
(let ([y (fl* ($flfloor (fl/ x 2.0)) 2.0)])
(cond
[(fl= x y) #t]
[(fl= (fl+ y 1.0) x) #f]
[else (noninteger-error who x)]))]
[else
(unless (integer? x) (noninteger-error who x))
(even? (real-part x))])))
(set-who! odd?
(lambda (x)
(type-case x
[(fixnum?) (fxodd? x)]
[(bignum?) (bigodd? x)]
[(flonum?)
(when (exceptional-flonum? x) (noninteger-error who x))
(let ([y (fl* ($flfloor (fl/ x 2.0)) 2.0)])
(cond
[(fl= x y) #f]
[(fl= (fl+ y 1.0) x) #t]
[else (noninteger-error who x)]))]
[else
(unless (integer? x) (noninteger-error who x))
(odd? (real-part x))])))
(set-who! round
(lambda (x)
(type-case x
[(flonum?) (flround x)]
[(fixnum? bignum?) x]
[(ratnum?)
(let ([x1 (+ x 1/2)])
(let ([x2 (floor x1)])
(if (and (= x1 x2) (odd? x2))
(- x2 1)
x2)))]
[else (nonreal-error who x)])))
;;; help routines used by library entries
;;; they are fully generic, but the cases are organized to catch those
;;; the library routines don't check first
(set! $=
(lambda (who x y)
(type-case x
[(fixnum?)
(type-case y
[(fixnum?) (fx= x y)]
[(bignum? ratnum? $exactnum?) #f]
[(cflonum?) (if (fixnum-floatable-wlop? x) (cfl= (fixnum->flonum x) y) (exact-inexact-compare? = x y))]
[else (nonnumber-error who y)])]
[(bignum?)
(type-case y
[(fixnum?) #f]
[(bignum?) (big= x y)]
[(ratnum? $exactnum?) #f]
[(flonum?) (exact-inexact-compare? = x y)]
[($inexactnum?) (and (fl= ($inexactnum-imag-part y) 0.0) (= x ($inexactnum-real-part y)))]
[else (nonnumber-error who y)])]
[(ratnum?)
(type-case y
[(fixnum? bignum? $exactnum?) #f]
[(ratnum?)
(and (= ($ratio-numerator x) ($ratio-numerator y))
(= ($ratio-denominator x) ($ratio-denominator y)))]
[(flonum?) (exact-inexact-compare? = x y)]
[($inexactnum?) (and (fl= ($inexactnum-imag-part y) 0.0) (= x ($inexactnum-real-part y)))]
[else (nonnumber-error who y)])]
[($exactnum? $inexactnum?)
(unless (number? y) (nonnumber-error who y))
(and (= (real-part x) (real-part y)) (= (imag-part x) (imag-part y)))]
[(flonum?)
(type-case y
[(cflonum?) (cfl= x y)]
[(fixnum?) (if (fixnum-floatable-wlop? y) (fl= x (fixnum->flonum y)) (exact-inexact-compare? = y x))]
[(bignum? ratnum?) (exact-inexact-compare? = y x)]
[($exactnum?) #f]
[else (nonnumber-error who y)])]
[else (nonnumber-error who x)])))
(set! $<
(lambda (who x y)
(type-case x
[(fixnum?)
(type-case y
[(fixnum?) (fx< x y)]
[(bignum?) ($bigpositive? y)]
[(ratnum?) (< (* ($ratio-denominator y) x) ($ratio-numerator y))]
[(flonum?) (if (fixnum-floatable-wlop? x) (< (fixnum->flonum x) y) (exact-inexact-compare? < x y))]
[else (nonreal-error who y)])]
[(bignum?)
(type-case y
[(bignum?) (big< x y)]
[(fixnum?) (not ($bigpositive? x))]
[(ratnum?) (< (* ($ratio-denominator y) x) ($ratio-numerator y))]
[(flonum?) (exact-inexact-compare? < x y)]
[else (nonreal-error who y)])]
[(ratnum?)
(type-case y
[(fixnum? bignum?)
(< ($ratio-numerator x) (* ($ratio-denominator x) y))]
[(ratnum?)
(< (* ($ratio-numerator x) ($ratio-denominator y))
(* ($ratio-numerator y) ($ratio-denominator x)))]
[(flonum?) (exact-inexact-compare? < x y)]
[else (nonreal-error who y)])]
[(flonum?)
(type-case y
[(flonum?) (fl< x y)]
[(fixnum?) (if (fixnum-floatable-wlop? y) (fl< x (fixnum->flonum y)) (exact-inexact-compare? > y x))]
[(bignum? ratnum?) (exact-inexact-compare? > y x)]
[else (nonreal-error who y)])]
[else (nonreal-error who x)])))
(set! $<=
(lambda (who x y)
(type-case x
[(fixnum?)
(type-case y
[(fixnum?) (fx<= x y)]
[(bignum?) ($bigpositive? y)]
[(ratnum?)
(<= (* ($ratio-denominator y) x) ($ratio-numerator y))]
[(flonum?) (if (fixnum-floatable-wlop? x) (<= (fixnum->flonum x) y) (exact-inexact-compare? <= x y))]
[else (nonreal-error who y)])]
[(bignum?)
(type-case y
[(bignum?) (not (big< y x))]
[(fixnum?) (not ($bigpositive? x))]
[(ratnum?)
(<= (* ($ratio-denominator y) x) ($ratio-numerator y))]
[(flonum?) (exact-inexact-compare? <= x y)]
[else (nonreal-error who y)])]
[(ratnum?)
(type-case y
[(fixnum? bignum?)
(<= ($ratio-numerator x) (* ($ratio-denominator x) y))]
[(ratnum?)
(<= (* ($ratio-numerator x) ($ratio-denominator y))
(* ($ratio-numerator y) ($ratio-denominator x)))]
[(flonum?) (exact-inexact-compare? <= x y)]
[else (nonreal-error who y)])]
[(flonum?)
(type-case y
[(flonum?) (fl<= x y)]
[(fixnum?) (if (fixnum-floatable-wlop? y) (fl<= x (fixnum->flonum y)) (exact-inexact-compare? >= y x))]
[(bignum? ratnum?) (exact-inexact-compare? >= y x)]
[else (nonreal-error who y)])]
[else (nonreal-error who x)])))
(set! $+
(lambda (who x y)
(define (exint-unknown+ who x y)
(type-case y
[(fixnum? bignum?) (integer+ x y)]
[(ratnum?)
(let ([d ($ratio-denominator y)])
(integer/ (+ (* x d) ($ratio-numerator y)) d))]
[(flonum?) (exact-inexact+ x y)]
[($exactnum? $inexactnum?)
(make-rectangular (+ x (real-part y)) (imag-part y))]
[else (nonnumber-error who y)]))
(cond
[(eqv? y 0) (unless (number? x) (nonnumber-error who x)) x]
[else
(type-case x
[(fixnum?)
(cond
[(fx= x 0) (unless (number? y) (nonnumber-error who y)) y]
[else (exint-unknown+ who x y)])]
[(bignum?) (exint-unknown+ who x y)]
[(ratnum?)
(type-case y
[(fixnum? bignum?)
(let ([d ($ratio-denominator x)])
(integer/ (+ (* y d) ($ratio-numerator x)) d))]
[(ratnum?)
(let ([xd ($ratio-denominator x)] [yd ($ratio-denominator y)])
(integer/
(+ (* ($ratio-numerator x) yd) (* ($ratio-numerator y) xd))
(* xd yd)))]
[($exactnum? $inexactnum?)
(make-rectangular (+ x (real-part y)) (imag-part y))]
[(flonum?) (exact-inexact+ x y)]
[else (nonnumber-error who y)])]
[(flonum?)
(type-case y
[(cflonum?) (cfl+ x y)]
[(fixnum? bignum? ratnum?) (exact-inexact+ y x)]
[($exactnum?)
(make-rectangular (+ x (real-part y)) (imag-part y))]
[else (nonnumber-error who y)])]
[($exactnum? $inexactnum?)
(type-case y
[(fixnum? bignum? ratnum? flonum?)
(make-rectangular (+ (real-part x) y) (imag-part x))]
[($exactnum? $inexactnum?)
(make-rectangular (+ (real-part x) (real-part y))
(+ (imag-part x) (imag-part y)))]
[else (nonnumber-error who y)])]
[else (nonnumber-error who x)])])))
(set! $*
(lambda (who x y)
(define (exint-unknown* who x y)
(type-case y
[(fixnum? bignum?) (integer* x y)]
[(ratnum?) (integer/ (* x ($ratio-numerator y)) ($ratio-denominator y))]
[($exactnum? $inexactnum?)
(make-rectangular (* x (real-part y)) (* x (imag-part y)))]
[(flonum?) (exact-inexact* x y)]
[else (nonnumber-error who y)]))
(cond
[(and (fixnum? y) ($fxu< (#3%fx+ y 1) 3))
(cond
[(fx= y 0) (unless (number? x) (nonnumber-error who x)) 0]
[(fx= y 1) (unless (number? x) (nonnumber-error who x)) x]
[else ($negate who x)])]
[else
(type-case x
[(fixnum?)
(cond
[($fxu< (#3%fx+ x 1) 3)
(cond
[(fx= x 0) (unless (number? y) (nonnumber-error who y)) 0]
[(fx= x 1) (unless (number? y) (nonnumber-error who y)) y]
[else ($negate who y)])]
[else (exint-unknown* who x y)])]
[(bignum?) (exint-unknown* who x y)]
[(ratnum?)
(type-case y
[(fixnum? bignum?)
(integer/ (* y ($ratio-numerator x)) ($ratio-denominator x))]
[(ratnum?)
(integer/
(* ($ratio-numerator x) ($ratio-numerator y))
(* ($ratio-denominator x) ($ratio-denominator y)))]
[($exactnum? $inexactnum?)
(make-rectangular (* x (real-part y)) (* x (imag-part y)))]
[(flonum?) (exact-inexact* x y)]
[else (nonnumber-error who y)])]
[(flonum?)
(type-case y
[(cflonum?) (cfl* x y)]
[(fixnum? bignum? ratnum?) (exact-inexact* y x)]
[($exactnum?)
(make-rectangular (* x (real-part y)) (* x (imag-part y)))]
[else (nonnumber-error who y)])]
[($exactnum? $inexactnum?)
(type-case y
[(fixnum? bignum? ratnum? flonum?)
(make-rectangular (* (real-part x) y) (* (imag-part x) y))]
[($exactnum? $inexactnum?)
(let ([a (real-part x)] [b (imag-part x)]
[c (real-part y)] [d (imag-part y)])
(make-rectangular (- (* a c) (* b d)) (+ (* a d) (* b c))))]
[else (nonnumber-error who y)])]
[else (nonnumber-error who x)])])))
(set! $-
(lambda (who x y)
(define (exint-unknown- who x y)
(type-case y
[(fixnum? bignum?) (integer- x y)]
[(ratnum?)
(let ([d ($ratio-denominator y)])
(integer/ (- (* x d) ($ratio-numerator y)) d))]
[($exactnum? $inexactnum?)
(make-rectangular (- x (real-part y)) (- (imag-part y)))]
[(flonum?) (exact-inexact- x y)]
[else (nonnumber-error who y)]))
(cond
[(eqv? y 0) (unless (number? x) (nonnumber-error who x)) x]
[else
(type-case x
[(fixnum?)
(cond
[(eqv? x 0) ($negate who y)]
[else (exint-unknown- who x y)])]
[(bignum?) (exint-unknown- who x y)]
[(ratnum?)
(type-case y
[(fixnum? bignum?)
(let ([d ($ratio-denominator x)])
(integer/ (- ($ratio-numerator x) (* y d)) d))]
[(ratnum?)
(let ([xd ($ratio-denominator x)] [yd ($ratio-denominator y)])
(integer/
(- (* ($ratio-numerator x) yd) (* ($ratio-numerator y) xd))
(* xd yd)))]
[($exactnum? $inexactnum?)
(make-rectangular (- x (real-part y)) (- (imag-part y)))]
[(flonum?) (exact-inexact- x y)]
[else (nonnumber-error who y)])]
[(flonum?)
(type-case y
[(cflonum?) (cfl- x y)]
[(fixnum? bignum? ratnum?) (inexact-exact- x y)]
[($exactnum?)
(make-rectangular (- x (real-part y)) (- (imag-part y)))]
[else (nonnumber-error who y)])]
[($exactnum? $inexactnum?)
(type-case y
[(fixnum? bignum? ratnum? flonum?)
(make-rectangular (- (real-part x) y) (imag-part x))]
[($exactnum? $inexactnum?)
(make-rectangular (- (real-part x) (real-part y))
(- (imag-part x) (imag-part y)))]
[else (nonnumber-error who y)])]
[else (nonnumber-error who x)])])))
(set! $/
(lambda (who x y)
(define (unknown-exint/ who x y)
(type-case x
[(fixnum?)
(when (eqv? y 0) (domain-error who y))
(if (eqv? x 0) 0 (integer/ x y))]
[(bignum?)
(when (eqv? y 0) (domain-error who y))
(integer/ x y)]
[(ratnum?)
(when (eqv? y 0) (domain-error who y))
(integer/ ($ratio-numerator x) (* y ($ratio-denominator x)))]
[($exactnum?)
(when (eqv? y 0) (domain-error who y))
(make-rectangular (/ (real-part x) y) (/ (imag-part x) y))]
[($inexactnum?)
(make-rectangular (/ (real-part x) y) (/ (imag-part x) y))]
[(flonum?) (inexact-exact/ x y)]
[else (nonnumber-error who x)]))
(type-case y
[(fixnum?)
(cond
[(fx= y 1) (unless (number? x) (nonnumber-error who x)) x]
[(fx= y -1) (unless (number? x) (nonnumber-error who x)) ($negate who x)]
[else (unknown-exint/ who x y)])]
[(bignum?) (unknown-exint/ who x y)]
[(ratnum?)
(type-case x
[(fixnum? bignum?)
(integer/ (* x ($ratio-denominator y)) ($ratio-numerator y))]
[(ratnum?)
(integer/ (* ($ratio-numerator x) ($ratio-denominator y))
(* ($ratio-denominator x) ($ratio-numerator y)))]
[($exactnum? $inexactnum?)
(make-rectangular (/ (real-part x) y) (/ (imag-part x) y))]
[(flonum?) (inexact-exact/ x y)]
[else (nonnumber-error who x)])]
[(flonum?)
(type-case x
[(cflonum?) (cfl/ x y)]
[(fixnum? bignum? ratnum?) (exact-inexact/ x y)]
[($exactnum?)
(make-rectangular (/ (real-part x) y) (/ (imag-part x) y))]
[else (nonnumber-error who x)])]
[($exactnum? $inexactnum?)
(type-case x
[(fixnum? bignum? ratnum? flonum?)
;; a / c+di => c(a/(cc+dd)) + (-d(a/cc+dd))i
(let ([c (real-part y)] [d (imag-part y)])
(let ([t (/ x (+ (* c c) (* d d)))])
(make-rectangular (* c t) (- (* d t)))))]
[($exactnum? $inexactnum?)
;; a+bi / c+di => (ac+bd)/(cc+dd) + ((bc-ad)/(cc+dd))i
(let ([a (real-part x)] [b (imag-part x)]
[c (real-part y)] [d (imag-part y)])
(let ([t (+ (* c c) (* d d))])
(make-rectangular (/ (+ (* a c) (* b d)) t)
(/ (- (* b c) (* a d)) t))))]
[else (nonnumber-error who x)])]
[else (nonnumber-error who y)])))
(set! conjugate
(lambda (x)
(type-case x
[(flonum? fixnum? ratnum? bignum?) x]
[($inexactnum?)
(fl-make-rectangular ($inexactnum-real-part x)
(fl- ($inexactnum-imag-part x)))]
[($exactnum?)
($make-exactnum ($exactnum-real-part x)
(- ($exactnum-imag-part x)))]
[else (nonnumber-error 'conjugate x)])))
(set! magnitude-squared
(lambda (x)
(type-case x
[(flonum?) (fl* x x)]
[($inexactnum?)
(let ([a ($inexactnum-real-part x)] [b ($inexactnum-imag-part x)])
(fl+ (fl* a a) (fl* b b)))]
[(fixnum? ratnum? bignum?) (* x x)]
[($exactnum?)
(let ([a ($exactnum-real-part x)] [b ($exactnum-imag-part x)])
(+ (* a a) (* b b)))]
[else (nonnumber-error 'magnitude-squared x)])))
(set! cfl-magnitude-squared
(lambda (x)
(type-case x
[(flonum?) (fl* x x)]
[($inexactnum?)
(let ([a ($inexactnum-real-part x)] [b ($inexactnum-imag-part x)])
(fl+ (fl* a a) (fl* b b)))]
[else (noncflonum-error 'cfl-magnitude-squared x)])))
(set! zero?
(lambda (z)
(type-case z
[(fixnum?) (fx= z 0)]
[(flonum?) (fl= z 0.0)]
[($inexactnum?) (cfl= z 0.0)]
[(bignum? ratnum? $exactnum?) #f]
[else (nonnumber-error 'zero? z)])))
(set-who! nan?
(lambda (x)
(type-case x
[(flonum?) ($nan? x)]
[(fixnum? bignum? ratnum?) #f]
[else (nonreal-error who x)])))
(set-who! infinite?
(lambda (x)
(type-case x
[(flonum?) (infinity? x)]
[(fixnum? bignum? ratnum?) #f]
[else (nonreal-error who x)])))
(set-who! finite?
(lambda (x)
(type-case x
[(flonum?) (not (exceptional-flonum? x))]
[(fixnum? bignum? ratnum?) #t]
[else (nonreal-error who x)])))
(let ()
(define $ash
(lambda (who x n)
(type-case n
[(fixnum?)
(type-case x
[(fixnum?)
(let ([max-fx-shift (- (constant fixnum-bits) 1)])
(if (fx< n 0)
; can't just go for it since (- n) may not be representable
(if (fx< n (- max-fx-shift))
(fxsra x max-fx-shift)
(fxsra x (fx- n)))
(if (fx> n max-fx-shift)
(integer-ash x n)
(let ([m (#3%fxsll x n)])
(if (fx= (fxsra m n) x)
m
(integer-ash x n))))))]
[(bignum?) (integer-ash x n)]
[else (nonexact-integer-error who x)])]
[(bignum?)
(type-case x
[(fixnum? bignum?)
(let ([k (if (negative? n)
(most-negative-fixnum)
(most-positive-fixnum))])
(ash (ash x k) (- n k)))]
[else (nonexact-integer-error who x)])]
[else (nonexact-integer-error who n)])))
(set-who! ash (lambda (x n) ($ash who x n)))
(set-who! bitwise-arithmetic-shift (lambda (x n) ($ash who x n))))
(set-who! bitwise-arithmetic-shift-left (lambda (x n) ($sll who x n)))
(set-who! bitwise-arithmetic-shift-right (lambda (x n) ($sra who x n)))
(set-who! integer-length
(lambda (x)
(type-case x
[(fixnum?) (fxlength x)]
[(bignum?) (biglength x)]
[else (nonexact-integer-error who x)])))
(set-who! bitwise-length ; same as integer-length
(lambda (x)
(type-case x
[(fixnum?) (fxlength x)]
[(bignum?) (biglength x)]
[else (nonexact-integer-error who x)])))
(set-who! bitwise-if
(lambda (x y z)
(define big-if
(lambda (ei1 ei2 ei3)
(bitwise-ior (bitwise-and ei1 ei2)
(bitwise-and (bitwise-not ei1) ei3))))
(type-case x
[(fixnum?)
(type-case y
[(fixnum?)
(type-case z
[(fixnum?) (fxif x y z)]
[(bignum?) (big-if x y z)]
[else (nonexact-integer-error who z)])]
[(bignum?)
(type-case z
[(fixnum? bignum?) (big-if x y z)]
[else (nonexact-integer-error who z)])]
[else (nonexact-integer-error who y)])]
[(bignum?)
(type-case y
[(fixnum? bignum?)
(type-case z
[(fixnum? bignum?) (big-if x y z)]
[else (nonexact-integer-error who z)])]
[else (nonexact-integer-error who y)])]
[else (nonexact-integer-error who x)])))
(set-who! bitwise-copy-bit
(lambda (x y b)
(unless (and (integer? x) (exact? x))
($oops who "~s is not an exact integer" x))
(unless (or (and (fixnum? y) (fxnonnegative? y))
(and (bignum? y) ($bigpositive? y)))
($oops who "~s is not a nonnegative exact integer" y))
(cond
[(eq? b 0) (logbit0 y x)]
[(eq? b 1) (logbit1 y x)]
[else ($oops who "bit argument ~s is not 0 or 1" b)])))
(let ()
(define count-table
(let ()
(define-syntax make-count-table
(lambda (x)
#`'#,(let ([bv (make-bytevector 256)])
(define slow-bit-count
(lambda (x)
(do ([x x (fxsrl x 1)] [cnt 0 (if (fxodd? x) (fx+ cnt 1) cnt)])
((fx= x 0) cnt))))
(do ([i 0 (fx+ i 1)])
((fx= i 256))
(bytevector-u8-set! bv i (slow-bit-count i)))
bv)))
(make-count-table)))
(define $fxbit-count
(lambda (n)
(if (fx= n 0)
0
(constant-case ptr-bits
[(64)
(fx+ (bytevector-u8-ref count-table (fxlogand n #xff))
(bytevector-u8-ref count-table (fxlogand (fxsrl n 8) #xff))
(bytevector-u8-ref count-table (fxlogand (fxsrl n 16) #xff))
(bytevector-u8-ref count-table (fxlogand (fxsrl n 24) #xff))
(bytevector-u8-ref count-table (fxlogand (fxsrl n 32) #xff))
(bytevector-u8-ref count-table (fxlogand (fxsrl n 40) #xff))
(bytevector-u8-ref count-table (fxlogand (fxsrl n 48) #xff))
(bytevector-u8-ref count-table (fxlogand (fxsrl n 56) #xff)))]
[(32)
(fx+ (bytevector-u8-ref count-table (fxlogand n #xff))
(bytevector-u8-ref count-table (fxlogand (fxsrl n 8) #xff))
(bytevector-u8-ref count-table (fxlogand (fxsrl n 16) #xff))
(bytevector-u8-ref count-table (fxlogand (fxsrl n 24) #xff)))]))))
(define $big-bit-count
(lambda (n)
(let ([end (fx+ (fx* ($bignum-length n) (constant bigit-bytes)) (constant bignum-data-disp))])
(do ([i (constant bignum-data-disp) (fx+ i 1)]
[cnt 0 (+ cnt (bytevector-u8-ref count-table ($object-ref 'unsigned-8 n i)))])
((fx= i end) cnt)))))
(set-who! fxbit-count
(lambda (n)
(unless (fixnum? n) ($oops who "~s is not a fixnum" n))
(if (fx< n 0)
(fxnot ($fxbit-count (fxnot n)))
($fxbit-count n))))
(set-who! bitwise-bit-count
(lambda (n)
(cond
[(fixnum? n)
(if (fx< n 0)
(fxnot ($fxbit-count (fxnot n)))
($fxbit-count n))]
[(bignum? n)
(if ($bigpositive? n)
($big-bit-count n)
(fxnot ($big-bit-count (bitwise-not n))))]
[else ($oops who "~s is not an exact integer" n)]))))
(set-who! bitwise-first-bit-set
(let ()
(define $big-first-bit-set
(foreign-procedure "(cs)s_big_first_bit_set" (ptr) ptr))
(lambda (n)
(cond
[(fixnum? n) (fxfirst-bit-set n)]
[(bignum? n) ($big-first-bit-set n)]
[else ($oops who "~s is not an exact integer" n)]))))
(set-who! bitwise-bit-field
(let ()
; big-positive-bit-field assumes n is a positive bignum, start and
; end are nonnegative fixnums, and end > start
(define big-positive-bit-field
(foreign-procedure "(cs)s_big_positive_bit_field" (ptr ptr ptr) ptr))
(define (generic-bit-field n start end)
(bitwise-and
($sra who n start)
(- ($sll who 1 (- end start)) 1)))
(lambda (n start end)
(unless (or (fixnum? n) (bignum? n))
($oops who "~s is not an exact integer" n))
(cond
[(and (fixnum? start) (fixnum? end))
(unless (fx>= start 0) ($oops who "invalid start index ~s" start))
(unless (fx>= end start) ($oops who "invalid end index ~s" end))
(cond
[(fx= end start) 0]
[(and (fixnum? n) (fx< end (fx- (fixnum-width) 1)))
(fxsra (fxand n (fxnot (fxsll -1 end))) start)]
[(and (bignum? n) ($bigpositive? n))
(big-positive-bit-field n start end)]
[else (generic-bit-field n start end)])]
[else
(unless (or (and (fixnum? start) (fx>= start 0))
(and (bignum? start) ($bigpositive? start)))
($oops who "invalid start index ~s" start))
(unless (or (and (fixnum? end) (>= end start))
(and (bignum? end) (>= end start)))
($oops who "invalid end index ~s" end))
(generic-bit-field n start end)]))))
(set-who! exact-integer-sqrt
(lambda (n)
(define (big-integer-sqrt n)
; adapted from SRFI 77 mail-archive posting by Brad Lucier, who derived
; it from "Karatsuba Square Root" by Paul Zimmermann, INRIA technical report
; RR-3805, 1999.
(if (and (fixnum? n) (or (not (fixnum? (expt 2 52))) (< n (expt 2 52))))
(let ([q (flonum->fixnum (flsqrt (fixnum->flonum n)))])
(values q (fx- n (fx* q q))))
(let ([b ($sra who (+ (integer-length n) 1) 2)])
(let-values ([(s^ r^) (big-integer-sqrt ($sra who n (+ b b)))])
(let* ([q&u (intquotient-remainder
(+ ($sll who r^ b)
(bitwise-bit-field n b (+ b b)))
($sll who s^ 1))]
[q (car q&u)]
[u (cdr q&u)])
(let ([s (+ ($sll who s^ b) q)]
[r (- (+ ($sll who u b)
(bitwise-bit-field n 0 b))
(* q q))])
(if (negative? r)
(values
(- s 1)
(+ r (- ($sll who s 1) 1)))
(values s r))))))))
(cond
[(and (fixnum? n) (fx>= n 0))
(if (or (not (fixnum? (expt 2 52)))
(fx< n (expt 2 52)))
(let ([q (flonum->fixnum (flsqrt (fixnum->flonum n)))])
(values q (fx- n (fx* q q))))
(big-integer-sqrt n))]
[(and (bignum? n) (#%$bigpositive? n)) (big-integer-sqrt n)]
[else ($oops who "~s is not a nonnegative exact integer" n)])))
(set-who! $quotient-remainder
(lambda (x y)
(type-case y
[(fixnum? bignum?)
(when (eq? y 0) (domain-error who y))
(type-case x
[(fixnum? bignum?) (intquotient-remainder x y)]
[else (nonexact-integer-error who x)])]
[else (nonexact-integer-error who y)])))
(set! random
(let ([fxrandom (foreign-procedure "(cs)s_fxrandom"
(scheme-object) scheme-object)]
[flrandom (foreign-procedure "(cs)s_flrandom"
(scheme-object) scheme-object)])
(lambda (x)
(cond
[(and (fixnum? x) (fx> x 0)) (fxrandom x)]
[(and (flonum? x) (fl> x 0.0)) (flrandom x)]
[(and (bignum? x) (> x 0))
(let ([radix (most-positive-fixnum)])
(do ([i x (quotient i radix)]
[a (fxrandom radix) (+ (* a radix) (fxrandom radix))])
((<= i radix) (remainder a x))))]
[else ($oops 'random "invalid argument ~s" x)]))))
(set! random-seed ; must follow \#-
(let ([limit #xFFFFFFFF]
[get-seed (foreign-procedure "(cs)s_random_seed"
() unsigned-32)]
[set-seed (foreign-procedure "(cs)s_set_random_seed"
(unsigned-32) void)])
(case-lambda
[() (get-seed)]
[(n)
(unless (and (or (fixnum? n) (bignum? n)) (<= 1 n limit))
($oops 'random-seed "invalid argument ~s" n))
(set-seed n)])))
(let ()
(define-syntax fl-op
(syntax-rules ()
[(_ name $name x ...)
(set-who! name
(lambda (x ...)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
...
($name x ...)))]))
(fl-op flexp $flexp x)
(fl-op flsin $flsin x)
(fl-op flcos $flcos x)
(fl-op fltan $fltan x)
(fl-op flasin $flasin x)
(fl-op flacos $flacos x)
(fl-op flsqrt $flsqrt x)
(fl-op flexpt $flexpt x y)
(fl-op flfloor $flfloor x)
(fl-op flceiling $flceiling x))
(set-who! flinteger?
(lambda (x)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
($flinteger? x)))
(set-who! fllog
(rec fllog
(case-lambda
[(x)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
($fllog x)]
[(x y)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
(unless (flonum? y) ($oops who "~s is not a flonum" y))
(/ ($fllog x) ($fllog y))])))
(set-who! flatan
(rec flatan
(case-lambda
[(x)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
($flatan x)]
[(x y)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
(unless (flonum? y) ($oops who "~s is not a flonum" y))
(flatan2 x y)])))
(set-who! fltruncate
(lambda (x)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
(if (negated-flonum? x) (fl- ($flfloor (flabs x))) ($flfloor x))))
(set-who! flnan?
(lambda (x)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
($nan? x)))
(set-who! flinfinite?
(lambda (x)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
(infinity? x)))
(set-who! flfinite?
(lambda (x)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
(not (exceptional-flonum? x))))
(set-who! flzero?
(lambda (x)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
(fl= x 0.0)))
(set-who! flpositive?
(lambda (x)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
(fl> x 0.0)))
(set-who! flnegative?
(lambda (x)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
(fl< x 0.0)))
(set-who! flnonpositive?
(lambda (x)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
(fl<= x 0.0)))
(set-who! flnonnegative?
(lambda (x)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
(fl>= x 0.0)))
(set-who! fleven?
(lambda (x)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
(when (exceptional-flonum? x) (noninteger-error who x))
(let ([y (fl* ($flfloor (fl/ x 2.0)) 2.0)])
(cond
[(fl= x y) #t]
[(fl= (fl+ y 1.0) x) #f]
[else (noninteger-error who x)]))))
(set-who! flodd?
(lambda (x)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
(when (exceptional-flonum? x) (noninteger-error who x))
(let ([y (fl* ($flfloor (fl/ x 2.0)) 2.0)])
(cond
[(fl= x y) #f]
[(fl= (fl+ y 1.0) x) #t]
[else (noninteger-error who x)]))))
(set-who! flmin
(let ([$flmin (lambda (x y) (if (or (fl< x y) ($nan? x)) x y))])
(case-lambda
[(x y)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
(unless (flonum? y) ($oops who "~s is not a flonum" y))
($flmin x y)]
[(x)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
x]
[(x y . r)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
(unless (flonum? y) ($oops who "~s is not a flonum" y))
(let loop ([x ($flmin x y)] [r r])
(if (null? r)
x
(let ([y (car r)])
(unless (flonum? y) ($oops who "~s is not a flonum" y))
(loop ($flmin x y) (cdr r)))))])))
(set-who! flmax
(let ([$flmax (lambda (x y) (if (or (fl> x y) ($nan? x)) x y))])
(case-lambda
[(x y)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
(unless (flonum? y) ($oops who "~s is not a flonum" y))
($flmax x y)]
[(x)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
x]
[(x y . r)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
(unless (flonum? y) ($oops who "~s is not a flonum" y))
(let loop ([x ($flmax x y)] [r r])
(if (null? r)
x
(let ([y (car r)])
(unless (flonum? y) ($oops who "~s is not a flonum" y))
(loop ($flmax x y) (cdr r)))))])))
(set-who! flnumerator
(lambda (x)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
(cond
[($flinteger-or-inf? x) x]
[($nan? x) x]
[else (inexact (numerator (exact x)))])))
(set-who! fldenominator
(lambda (x)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
(cond
[($flinteger-or-inf? x) 1.0]
[($nan? x) x]
[else (inexact (denominator (exact x)))])))
(set-who! fldiv-and-mod
(lambda (x y)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
(unless (flonum? y) ($oops who "~s is not a flonum" y))
($fldiv-and-mod x y)))
(set-who! fldiv
(lambda (x y)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
(unless (flonum? y) ($oops who "~s is not a flonum" y))
($fldiv x y)))
(set-who! flmod
(lambda (x y)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
(unless (flonum? y) ($oops who "~s is not a flonum" y))
($flmod x y)))
(set-who! fldiv0-and-mod0
(lambda (x y)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
(unless (flonum? y) ($oops who "~s is not a flonum" y))
($fldiv0-and-mod0 x y)))
(set-who! fldiv0
(lambda (x y)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
(unless (flonum? y) ($oops who "~s is not a flonum" y))
($fldiv0 x y)))
(set-who! flmod0
(lambda (x y)
(unless (flonum? x) ($oops who "~s is not a flonum" x))
(unless (flonum? y) ($oops who "~s is not a flonum" y))
($flmod0 x y)))
(set-who! fxdiv-and-mod
(lambda (x y)
(unless (fixnum? x) ($oops who "~s is not a fixnum" x))
(unless (fixnum? y) ($oops who "~s is not a fixnum" y))
(when (fx= y 0) (domain-error who y))
($fxdiv-and-mod x y who)))
(set-who! fxdiv
(lambda (x y)
(unless (fixnum? x) ($oops who "~s is not a fixnum" x))
(unless (fixnum? y) ($oops who "~s is not a fixnum" y))
(when (fx= y 0) (domain-error who y))
($fxdiv x y who)))
(set-who! fxmod
(lambda (x y)
(unless (fixnum? x) ($oops who "~s is not a fixnum" x))
(unless (fixnum? y) ($oops who "~s is not a fixnum" y))
(when (fx= y 0) (domain-error who y))
($fxmod x y)))
(set-who! fxdiv0-and-mod0
(lambda (x y)
(unless (fixnum? x) ($oops who "~s is not a fixnum" x))
(unless (fixnum? y) ($oops who "~s is not a fixnum" y))
(when (fx= y 0) (domain-error who y))
($fxdiv0-and-mod0 x y who)))
(set-who! fxdiv0
(lambda (x y)
(unless (fixnum? x) ($oops who "~s is not a fixnum" x))
(unless (fixnum? y) ($oops who "~s is not a fixnum" y))
(when (fx= y 0) (domain-error who y))
($fxdiv0 x y who)))
(set-who! fxmod0
(lambda (x y)
(unless (fixnum? x) ($oops who "~s is not a fixnum" x))
(unless (fixnum? y) ($oops who "~s is not a fixnum" y))
(when (fx= y 0) (domain-error who y))
($fxmod0 x y)))
(let ()
(define (return n)
(if (fixnum? n)
(values n 0)
(if ($bigpositive? n)
(values (- n (expt 2 (fixnum-width))) 1)
(values (+ n (expt 2 (fixnum-width))) -1))))
(set-who! fx+/carry
(lambda (x y z)
(cond
[($fx+? ($fx+? x y) z) => (lambda (n) (values n 0))]
[else
(unless (fixnum? x) ($oops who "~s is not a fixnum" x))
(unless (fixnum? y) ($oops who "~s is not a fixnum" y))
(unless (fixnum? z) ($oops who "~s is not a fixnum" z))
(return (+ x y z))])))
(set-who! fx-/carry
(lambda (x y z)
(cond
[($fx-? ($fx-? x y) z) => (lambda (n) (values n 0))]
[else
(unless (fixnum? x) ($oops who "~s is not a fixnum" x))
(unless (fixnum? y) ($oops who "~s is not a fixnum" y))
(unless (fixnum? z) ($oops who "~s is not a fixnum" z))
(return (- x y z))]))))
(set-who! fx*/carry
(lambda (x y z)
(unless (fixnum? x) ($oops who "~s is not a fixnum" x))
(unless (fixnum? y) ($oops who "~s is not a fixnum" y))
(let ([t (* x y)])
(cond
[($fx+? t z) => (lambda (n) (values n 0))]
[else
(unless (fixnum? z) ($oops who "~s is not a fixnum" z))
(let-values ([(q r) ($exdiv0-and-mod0 (+ (* x y) z) (expt 2 (fixnum-width)))])
(values r q))]))))
(set-who! bitwise-copy-bit-field
(lambda (n start end m)
(unless (or (fixnum? n) (bignum? n))
($oops who "~s is not an exact integer" n))
(unless (or (and (fixnum? start) (fx>= start 0))
(and (bignum? start) ($bigpositive? start)))
($oops who "invalid start index ~s" start))
(unless (or (and (fixnum? end) (fixnum? start) (fx>= end start))
(and (bignum? end) (>= end start)))
($oops who "invalid end index ~s" end))
(unless (or (fixnum? m) (bignum? m))
($oops who "~s is not an exact integer" m))
(let ([mask (- ($sll who 1 (- end start)) 1)])
(logor
(logand n (lognot ($sll who mask start)))
($sll who (logand m mask) start)))))
(set-who! bitwise-rotate-bit-field
(lambda (n start end count)
(unless (or (fixnum? n) (bignum? n))
($oops who "~s is not an exact integer" n))
(unless (or (and (fixnum? start) (fx>= start 0))
(and (bignum? start) ($bigpositive? start)))
($oops who "invalid start index ~s" start))
(unless (or (and (fixnum? end) (fixnum? start) (fx>= end start))
(and (bignum? end) (>= end start)))
($oops who "invalid end index ~s" end))
(unless (or (and (fixnum? count) (fx>= count 0))
(and (bignum? count) ($bigpositive? count)))
($oops who "invalid count ~s" count))
(let ([width (- end start)])
(if (positive? width)
(let ([count (mod count width)]
[mask ($sll who (- ($sll who 1 width) 1) start)])
(let ([field (logand n mask)])
(logxor
(logxor
(logand
(logor ($sll who field count)
($sra who field (- width count)))
mask)
field)
n)))
n))))
(set-who! fxrotate-bit-field
(lambda (n start end count)
(unless (fixnum? n) ($oops who "~s is not a fixnum" n))
(unless (and (fixnum? end) ($fxu< end (fixnum-width)))
($oops who "invalid end index ~s" end))
(unless (and (fixnum? start) (not ($fxu< end start)))
(if (and (fixnum? start) ($fxu< start (fixnum-width)))
($oops who "start index ~s is greater than end index ~s" start end)
($oops who "invalid start index ~s" start)))
(let ([width (fx- end start)])
(unless (and (fixnum? count) (not ($fxu< width count)))
(if (and (fixnum? count) ($fxu< count (fixnum-width)))
($oops who "count ~s is greater than difference between end index ~s and start index ~s" count end start)
($oops who "invalid count ~s" count)))
(let ([mask (fxsll (fxsrl -1 (fx- (fixnum-width) width)) start)])
(let ([field (fxlogand n mask)])
(fxlogor
(fxlogxor n field)
(fxlogand
(fxlogor
(fxsll (fxlogand field (fxsrl mask count)) count)
(fxsrl field (fx- width count)))
mask)))))))
(let ()
(define rev-table
(let ()
(define-syntax make-rev-table
(lambda (x)
#`'#,(let ([bv (make-bytevector 256)])
(for-each
(lambda (m)
(bytevector-u8-set! bv m
(do ([m m (fxsrl m 1)]
[m^ 0 (fxior (fxsll m^ 1) (fxand m 1))]
[k 8 (fx- k 1)])
((fx= k 0) m^))))
(iota 256))
bv)))
(make-rev-table)))
(define $fxreverse
(lambda (m k)
(do ([m m (fxsrl m 8)]
[m^ 0 (fxior (fxsll m^ 8) (bytevector-u8-ref rev-table (fxand m #xff)))]
[k k (fx- k 8)])
((fx< k 8)
(fxior
(fxsll m^ k)
(fxsrl (bytevector-u8-ref rev-table m) (fx- 8 k)))))))
(set-who! fxreverse-bit-field
(lambda (n start end)
(unless (fixnum? n) ($oops who "~s is not a fixnum" n))
(unless (and (fixnum? start) ($fxu< start (fixnum-width)))
($oops who "invalid start index ~s" start))
(unless (and (fixnum? end) ($fxu< end (fixnum-width)))
($oops who "invalid end index ~s" end))
(unless (fx<= start end)
($oops who "start index ~s is greater than end index ~s" start end))
(fxcopy-bit-field n start end
($fxreverse (fxbit-field n start end) (fx- end start)))))
(set-who! bitwise-reverse-bit-field
(lambda (n start end)
(define sra bitwise-arithmetic-shift-right)
(define sll bitwise-arithmetic-shift-left)
(define w-1 (fx- (fixnum-width) 1))
(define mask (- (sll 1 w-1) 1))
(unless (or (fixnum? n) (bignum? n))
($oops who "~s is not an exact integer" n))
(unless (or (and (fixnum? start) (fx>= start 0))
(and (bignum? start) ($bigpositive? start)))
($oops who "invalid start index ~s" start))
(unless (or (and (fixnum? end) (fx>= end 0))
(and (bignum? end) ($bigpositive? end)))
($oops who "invalid end index ~s" end))
(unless (<= start end)
($oops who "start index ~s is greater than end index ~s" start end))
(bitwise-copy-bit-field n start end
(do ([m (bitwise-bit-field n start end) (sra m w-1)]
[m^ 0 (logor (sll m^ w-1) ($fxreverse (logand m mask) w-1))]
[k (- end start) (- k w-1)])
((<= k w-1) (logor (sll m^ k) ($fxreverse m k))))))))
)))))))
)