% Copyright 2005-2017 Cisco Systems, Inc. % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. \chapter{Numeric Operations\label{CHPTNUMERIC}} This chapter describes {\ChezScheme} extensions to the standard set of operations on numbers. See Chapter~\ref{TSPL:CHPTOBJECTS} of {\TSPLFOUR} or the Revised$^6$ Report on Scheme for a description of standard operations on numbers. {\ChezScheme} supports the full set of Scheme numeric datatypes, including exact and inexact integer, rational, real, and complex numbers. A variety of representations are used to support these datatypes: \begin{description} \item[\index{fixnum}\emph{Fixnums}] represent exact integers in the fixnum range (see \scheme{most-negative-fixnum} and \scheme{most-positive-fixnum}). The length of a string, vector, or fxvector is constrained to be a fixnum. \item[\index{bignum}\emph{Bignums}] represent arbitrary-precision exact integers outside of the fixnum range. \item[\index{ratnum}\emph{Ratnums}] represent arbitrary-precision exact rational numbers. Each ratnum contains an exact integer (fixnum or bignum) numerator and an exact integer denominator. Ratios are always reduced to lowest terms and never have a denominator of one or a numerator of zero. \item[\index{flonum}\emph{Flonums}] represent inexact real numbers. Flonums are IEEE 64-bit floating-point numbers. (Since flonums cannot represent irrational numbers, all inexact real numbers are actually rational, although they may approximate irrational quantities.) \item[\index{exact complexnum}\emph{Exact complexnums}] represent exact complex numbers. Each exact complexnum contains an exact rational (fixnum, bignum, or ratnum) real part and an exact rational imaginary part. \item[\index{inexact complexnum}\emph{Inexact complexnums}] represent inexact complex numbers. Each inexact complexnum contains a flonum real part and a flonum imaginary part. \end{description} \noindent Most numbers can be represented in only one way; however, real numbers are sometimes represented as inexact complex numbers with imaginary component equal to zero. {\ChezScheme} extends the syntax of numbers with arbitrary radixes from two through 36, nondecimal floating-point and scientific notation, and printed representations for IEEE infinities and NANs. (NAN stands for ``not-a-number.'') Arbitrary radixes are specified with the prefix \scheme{#\var{n}r}, where \var{n} ranges from 2 through 36. Digits beyond 9 are specified with the letters (in either upper or lower case) \scheme{a} through \scheme{z}. For example, \scheme{#2r101} is $5_{10}$, and \scheme{#36rZ} is $35_{10}$. For higher radixes, an ambiguity arises between the interpretation of certain letters, e.g., \scheme{e}, as digits or exponent specifiers; in such cases, the letter is assumed to be a digit. For example, the \scheme{e} in \scheme{#x3.2e5} is interpreted as a digit, not as an exponent marker, whereas in \scheme{3.2e5} it is treated as an exponent marker. IEEE infinities are printed as \scheme{+inf.0} and \scheme{-inf.0}, while IEEE NANs are printed as \scheme{+nan.0} or \scheme{-nan.0}. (+nan.0 is used on output for all NANs.) \schemedisplay (/ 1.0 0.0) ;=> +inf.0 (/ 1.0 -0.0) ;=> -inf.0 (/ 0.0 0.0) ;=> +nan.0 (/ +inf.0 -inf.0) ;=> +nan.0 \endschemedisplay The first section of this chapter describes type-specific numeric type predicates. Sections~\ref{SECTNUMERICFIXNUM} through~\ref{SECTNUMERICCOMPLEXNUM} describe fast, type-specific numeric operations on fixnums, flonums, and inexact complex numbers (flonums and/or inexact complexnums). The fixnum-specific versions should be used only when the programmer is certain that the operands and results (where appropriate) will be fixnums, i.e., integers in the range \scheme{(most-negative-fixnum)} to \scheme{(most-positive-fixnum)}, inclusive. The flonum-specific versions should be used only when the inputs and outputs (where appropriate) are certain to be flonums. The mixed flonum/complexnum versions should be used only when the inputs are certain to be either flonums or inexact complexnums. Section~\ref{SECTNUMERICLOGICAL} describes operations, both arbitrary precision and fixnum-specific, that allow exact integers to be treated as sets or sequences of bits. Random number generation is covered Section~\ref{SECTNUMERICRANDOM}, and miscellaneous numeric operations are covered in the Section~\ref{SECTNUMERICMISC}. \section{Numeric Type Predicates} \index{fixnum}\index{flonum}\index{bignum}\index{ratnum}\index{cflonum}% The Revised$^6$ Report distinguishes two types of special numeric objects: fixnums and flonums. {\ChezScheme} additionally distinguishes \emph{bignums} (exact integers outside of the fixnum range) and \emph{ratnums} (ratios of exact integers). It also provides a predicate for recognizing \emph{cflonums}, which are flonums or inexact complex numbers. %---------------------------------------------------------------------------- \entryheader \formdef{bignum?}{\categoryprocedure}{(bignum? \var{obj})} \returns \scheme{#t} if \var{obj} is a bignum, otherwise \scheme{#f} \listlibraries \endentryheader \noskip\schemedisplay (bignum? 0) ;=> #f (bignum? (most-positive-fixnum)) ;=> #f (bignum? (most-negative-fixnum)) ;=> #f (bignum? (* (most-positive-fixnum) 2)) ;=> #t (bignum? 3/4) ;=> #f (bignum? 'a) ;=> #f \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{ratnum?}{\categoryprocedure}{(ratnum? \var{obj})} \returns \scheme{#t} if \var{obj} is a ratnum, otherwise \scheme{#f} \listlibraries \endentryheader \noskip\schemedisplay (ratnum? 0) ;=> #f (ratnum? (* (most-positive-fixnum) 2)) ;=> #f (ratnum? 3/4) ;=> #t (ratnum? -10/2) ;=> #f (ratnum? -11/2) ;=> #t (ratnum? 'a) ;=> #f \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{cflonum?}{\categoryprocedure}{(cflonum? \var{obj})} \returns \scheme{#t} if \var{obj} is an inexact complexnum or flonum, otherwise \scheme{#f} \listlibraries \endentryheader \noskip\schemedisplay (cflonum? 0) ;=> #f (cflonum? 0.0) ;=> #t (cflonum? 3+4i) ;=> #f (cflonum? 3.0+4i) ;=> #t (cflonum? +i) ;=> #f (cflonum? +1.0i) ;=> #t \endschemedisplay \section{Fixnum Operations\label{SECTNUMERICFIXNUM}} Fixnum-specific procedures normally check their inputs and outputs (where appropriate), but at optimization level 3 the compiler generates, in most cases, code that does not perform these checks. %---------------------------------------------------------------------------- \entryheader \formdef{most-positive-fixnum}{\categoryprocedure}{(most-positive-fixnum)} \returns the most positive fixnum supported by the system \formdef{most-negative-fixnum}{\categoryprocedure}{(most-negative-fixnum)} \returns the most negative fixnum supported by the system \listlibraries \endentryheader \noindent These procedures are identical to the Revised$^6$ Report \scheme{greatest-fixnum} and \scheme{least-fixnum} procedures. %---------------------------------------------------------------------------- \entryheader \formdef{fx=}{\categoryprocedure}{(fx= \var{fixnum_1} \var{fixnum_2} \dots)} \formdef{fx<}{\categoryprocedure}{(fx< \var{fixnum_1} \var{fixnum_2} \dots)} \formdef{fx>}{\categoryprocedure}{(fx> \var{fixnum_1} \var{fixnum_2} \dots)} \formdef{fx<=}{\categoryprocedure}{(fx<= \var{fixnum_1} \var{fixnum_2} \dots)} \formdef{fx>=}{\categoryprocedure}{(fx>= \var{fixnum_1} \var{fixnum_2} \dots)} \returns \scheme{#t} if the relation holds, \scheme{#f} otherwise \listlibraries \endentryheader \noindent The predicate \scheme{fx=} returns \scheme{#t} if its arguments are equal. The predicate \scheme{fx<} returns \scheme{#t} if its arguments are monotonically increasing, i.e., each argument is greater than the preceding ones, while \scheme{fx>} returns \scheme{#t} if its arguments are monotonically decreasing. The predicate \scheme{fx<=} returns \scheme{#t} if its arguments are monotonically nondecreasing, i.e., each argument is not less than the preceding ones, while \scheme{fx>=} returns \scheme{#t} if its arguments are monotonically nonincreasing. When passed only one argument, each of these predicates returns \scheme{#t}. These procedures are similar to the Revised$^6$ Report procedures \scheme{fx=?}, \scheme{fx?}, \scheme{fx<=?}, and \scheme{fx>=?} except that the Revised$^6$ Report procedures require two or more arguments, and their names have the ``\scheme{?}'' suffix. \schemedisplay (fx= 0) ;=> #t (fx= 0 0) ;=> #t (fx< (most-negative-fixnum) 0 (most-positive-fixnum)) ;=> #t (let ([x 3]) (fx<= 0 x 9)) ;=> #t (fx<= 0 3 3) ;=> #t (fx>= 0 0 (most-negative-fixnum)) ;=> #t \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{fxnonpositive?}{\categoryprocedure}{(fxnonpositive? \var{fixnum})} \returns \scheme{#t} if \var{fixnum} is not greater than zero, \scheme{#f} otherwise \formdef{fxnonnegative?}{\categoryprocedure}{(fxnonnegative? \var{fixnum})} \returns \scheme{#t} if \var{fixnum} is not less than zero, \scheme{#f} otherwise \listlibraries \endentryheader \noindent \scheme{fxnonpositive?} is equivalent to \scheme{(lambda (x) (fx<= x 0))}, and \scheme{fxnonnegative?} is equivalent to \scheme{(lambda (x) (fx>= x 0))}. \schemedisplay (fxnonpositive? 128) ;=> #f (fxnonpositive? 0) ;=> #t (fxnonpositive? -1) ;=> #t (fxnonnegative? -65) ;=> #f (fxnonnegative? 0) ;=> #t (fxnonnegative? 1) ;=> #t \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{fx+}{\categoryprocedure}{(fx+ \var{fixnum} \dots)} \returns the sum of the arguments \scheme{\var{fixnum} \dots} \listlibraries \endentryheader \noindent When called with no arguments, \scheme{fx+} returns \scheme{0}. \schemedisplay (fx+) ;=> 0 (fx+ 1 2) ;=> 3 (fx+ 3 4 5) ;=> 12 (apply fx+ '(1 2 3 4 5)) ;=> 15 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{fx-}{\categoryprocedure}{(fx- \var{fixnum_1} \var{fixnum_2} \dots)} \returns a fixnum \listlibraries \endentryheader \noindent When called with one argument, \scheme{fx-} returns the negative of \var{fixnum_1}. Thus, \scheme{(fx- \var{fixnum_1})} is an idiom for \scheme{(fx- 0 \var{fixnum_1})}. When called with two or more arguments, \scheme{fx-} returns the result of subtracting the sum of the numbers \scheme{\var{fixnum_2} \dots} from \var{fixnum_1}. \schemedisplay (fx- 3) ;=> -3 (fx- 4 3) ;=> 1 (fx- 4 3 2 1) ;=> -2 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{fx*}{\categoryprocedure}{(fx* \var{fixnum} \dots)} \returns the product of the arguments \scheme{\var{fixnum} \dots} \listlibraries \endentryheader \noindent When called with no arguments, \scheme{fx*} returns \scheme{1}. \schemedisplay (fx*) ;=> 1 (fx* 1 2) ;=> 2 (fx* 3 -4 5) ;=> -60 (apply fx* '(1 -2 3 -4 5)) ;=> 120 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{fx/}{\categoryprocedure}{(fx/ \var{fixnum_1} \var{fixnum_2} \dots)} \returns see explanation \listlibraries \endentryheader \noindent When called with one argument, \scheme{fx/} returns the reciprocal of \var{fixnum_1}. That is, \scheme{(fx/ \var{fixnum_1})} is an idiom for \scheme{(fx/ 1 \var{fixnum_1})}. When called with two or more arguments, \scheme{fx/} returns the result of dividing \var{fixnum_1} by the product of the remaining arguments \scheme{\var{fixnum_2} \dots}. \schemedisplay (fx/ 1) ;=> 1 (fx/ -17) ;=> 0 (fx/ 8 -2) ;=> -4 (fx/ -9 2) ;=> -4 (fx/ 60 5 3 2) ;=> 2 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{fx1+}{\categoryprocedure}{(fx1+ \var{fixnum})} \formdef{fx1-}{\categoryprocedure}{(fx1- \var{fixnum})} \returns \var{fixnum} plus 1 or \var{fixnum} minus 1 \listlibraries \endentryheader \schemedisplay (define fxplus (lambda (x y) (if (fxzero? x) y (fxplus (fx1- x) (fx1+ y))))) (fxplus 7 8) ;=> 15 \endschemedisplay \noindent \scheme{fx1+} and \scheme{fx1-} can be defined as follows: \schemedisplay (define fx1+ (lambda (x) (fx+ x 1))) (define fx1- (lambda (x) (fx- x 1))) \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{fxquotient}{\categoryprocedure}{(fxquotient \var{fixnum_1} \var{fixnum_2} \dots)} \returns see explanation \listlibraries \endentryheader \noindent \scheme{fxquotient} is identical to \scheme{fx/}. See the description of \scheme{fx/} above. %---------------------------------------------------------------------------- \entryheader \formdef{fxremainder}{\categoryprocedure}{(fxremainder \var{fixnum_1} \var{fixnum_2})} \returns the fixnum remainder of \var{fixnum_1} divided by \var{fixnum_2} \listlibraries \endentryheader \noindent The result of \scheme{fxremainder} has the same sign as \var{fixnum_1}. \schemedisplay (fxremainder 16 4) ;=> 0 (fxremainder 5 2) ;=> 1 (fxremainder -45 7) ;=> -3 (fxremainder 10 -3) ;=> 1 (fxremainder -17 -9) ;=> -8 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{fxmodulo}{\categoryprocedure}{(fxmodulo \var{fixnum_1} \var{fixnum_2})} \returns the fixnum modulus of \var{fixnum_1} and \var{fixnum_2} \listlibraries \endentryheader \noindent The result of \scheme{fxmodulo} has the same sign as \var{fixnum_2}. \schemedisplay (fxmodulo 16 4) ;=> 0 (fxmodulo 5 2) ;=> 1 (fxmodulo -45 7) ;=> 4 (fxmodulo 10 -3) ;=> -2 (fxmodulo -17 -9) ;=> -8 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{fxabs}{\categoryprocedure}{(fxabs \var{fixnum})} \returns the absolute value of \var{fixnum} \listlibraries \endentryheader \noskip\schemedisplay (fxabs 1) ;=> 1 (fxabs -1) ;=> 1 (fxabs 0) ;=> 0 \endschemedisplay \section{Flonum Operations\label{SECTNUMERICFLONUM}} Inexact real numbers are normally represented by \var{flonums}. A flonum is a single 64-bit double-precision floating point number. This section describes operations on flonums, most of which accept flonum arguments and return flonum values. In most cases, the operations are inline-coded or coded as machine language subroutines at optimize-level~3 with no argument type checking; full type checking is performed at lower optimize levels. Flonum-specific procedure names begin with the prefix ``\scheme{fl}'' to set them apart from their generic counterparts. Inexact real numbers may also be represented by inexact complexnums with imaginary parts equal to zero, which cannot be used as input to the flonum-specific operators. Such numbers are produced, however, only from operations involving complex numbers with nonzero imaginary parts, by explicit calls to \scheme{fl-make-rectangular}, \scheme{make-rectangular}, or \scheme{make-polar}, or by numeric input in either polar or rectangular format. %---------------------------------------------------------------------------- \entryheader \formdef{flonum->fixnum}{\categoryprocedure}{(flonum->fixnum \var{flonum})} \returns the fixnum representation of \var{flonum}, truncated \listlibraries \endentryheader \noindent The truncated value of \var{flonum} must fall within the fixnum range. \scheme{flonum->fixnum} is a restricted version of \index{\scheme{exact}}\scheme{exact}, which converts any numeric representation to its exact equivalent. \schemedisplay (flonum->fixnum 0.0) ;=> 0 (flonum->fixnum 3.9) ;=> 3 (flonum->fixnum -2.2) ;=> -2 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{fl=}{\categoryprocedure}{(fl= \var{flonum_1} \var{flonum_2} \dots)} \formdef{fl<}{\categoryprocedure}{(fl< \var{flonum_1} \var{flonum_2} \dots)} \formdef{fl>}{\categoryprocedure}{(fl> \var{flonum_1} \var{flonum_2} \dots)} \formdef{fl<=}{\categoryprocedure}{(fl<= \var{flonum_1} \var{flonum_2} \dots)} \formdef{fl>=}{\categoryprocedure}{(fl>= \var{flonum_1} \var{flonum_2} \dots)} \returns \scheme{#t} if the relation holds, \scheme{#f} otherwise \listlibraries \endentryheader \noindent The predicate \scheme{fl=} returns \scheme{#t} if its arguments are equal. The predicate \scheme{fl<} returns \scheme{#t} if its arguments are monotonically increasing, i.e., each argument is greater than the preceding ones, while \scheme{fl>} returns \scheme{#t} if its arguments are monotonically decreasing. The predicate \scheme{fl<=} returns \scheme{#t} if its arguments are monotonically nondecreasing, i.e., each argument is not less than the preceding ones, while \scheme{fl>=} returns \scheme{#t} if its arguments are monotonically nonincreasing. When passed only one argument, each of these predicates returns \scheme{#t}. IEEE NANs are not comparable, i.e., comparisons involving NANs always return \scheme{#f}. These procedures are similar to the Revised$^6$ Report procedures \scheme{fl=?}, \scheme{fl?}, \scheme{fl<=?}, and \scheme{fl>=?} except that the Revised$^6$ Report procedures require two or more arguments, and their names have the ``\scheme{?}'' suffix. \schemedisplay (fl= 0.0) ;=> #t (fl= 0.0 0.0) ;=> #t (fl< -1.0 0.0 1.0) ;=> #t (fl> -1.0 0.0 1.0) ;=> #f (fl<= 0.0 3.0 3.0) ;=> #t (fl>= 4.0 3.0 3.0) ;=> #t (fl< 7.0 +inf.0) ;=> #t (fl= +nan.0 0.0) ;=> #f (fl= +nan.0 +nan.0) ;=> #f (fl< +nan.0 +nan.0) ;=> #f (fl> +nan.0 +nan.0) ;=> #f \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{flnonpositive?}{\categoryprocedure}{(flnonpositive? \var{fl})} \returns \scheme{#t} if \var{fl} is not greater than zero, \scheme{#f} otherwise \formdef{flnonnegative?}{\categoryprocedure}{(flnonnegative? \var{fl})} \returns \scheme{#t} if \var{fl} is not less than zero, \scheme{#f} otherwise \listlibraries \endentryheader \noindent \scheme{flnonpositive?} is equivalent to \scheme{(lambda (x) (fl<= x 0.0))}, and \scheme{flnonnegative?} is equivalent to \scheme{(lambda (x) (fl>= x 0.0))}. \noindent Even if the flonum representation distinguishes -0.0 from +0.0, both are considered nonpositive and nonnegative. \schemedisplay (flnonpositive? 128.0) ;=> #f (flnonpositive? 0.0) ;=> #t (flnonpositive? -0.0) ;=> #t (flnonpositive? -1.0) ;=> #t (flnonnegative? -65.0) ;=> #f (flnonnegative? 0.0) ;=> #t (flnonnegative? -0.0) ;=> #t (flnonnegative? 1.0) ;=> #t (flnonnegative? +nan.0) ;=> #f (flnonpositive? +nan.0) ;=> #f (flnonnegative? +inf.0) ;=> #t (flnonnegative? -inf.0) ;=> #f \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{decode-float}{\categoryprocedure}{(decode-float \var{x})} \returns see below \listlibraries \endentryheader \noindent \var{x} must be a flonum. \scheme{decode-float} returns a vector with three integer elements, \var{m}, \var{e}, and \var{s}, such that $x = sm2^e$. It is useful primarily in the printing of floating-point numbers. \schemedisplay (decode-float 1.0) ;=> #(4503599627370496 -52 1) (decode-float -1.0) ;=> #(4503599627370496 -52 -1) (define slow-identity (lambda (x) (inexact (let ([v (decode-float x)]) (let ([m (vector-ref v 0)] [e (vector-ref v 1)] [s (vector-ref v 2)]) (* s m (expt 2 e))))))) (slow-identity 1.0) ;=> 1.0 (slow-identity -1e20) ;=> -1e20 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{fllp}{\categoryprocedure}{(fllp \var{flonum})} \returns see below \listlibraries \endentryheader \noindent \scheme{fllp} returns the 12-bit integer consisting of the exponent plus highest order represented bit of a flonum (ieee 64-bit floating-point number). It can be used to compute a fast approximation of the logarithm of the number. \schemedisplay (fllp 0.0) ;=> 0 (fllp 1.0) ;=> 2046 (fllp -1.0) ;=> 2046 (fllp 1.5) ;=> 2047 (fllp +inf.0) ;=> 4094 (fllp -inf.0) ;=> 4094 (fllp #b1.0e-1111111111) ;=> 1 (fllp #b1.0e-10000000000) ;=> 0 \endschemedisplay \section{Inexact Complex Operations\label{SECTNUMERICCOMPLEXNUM}} The procedures described in this section provide mechanisms for creating and operating on inexact complex numbers. Inexact complex numbers with nonzero imaginary parts are represented as \emph{inexact complexnums}. An inexact complexnum contains two 64-bit double-precision floating point numbers. Inexact \index{imaginary numbers}\index{complex numbers}complex numbers with imaginary parts equal to zero (in other words, inexact real numbers) may be represented as either inexact complexnums or flonums. The operations described in this section accept any mix of inexact complexnum and flonum arguments (collectively, ``\index{cflonums}cflonums''). In most cases, the operations are performed with minimal type checking at optimize-level 3; full type checking is performed at lower optimize levels. Inexact complex procedure names begin with the prefix ``\scheme{cfl}'' to set them apart from their generic counterparts. %---------------------------------------------------------------------------- \entryheader \formdef{fl-make-rectangular}{\categoryprocedure}{(fl-make-rectangular \var{flonum_1} \var{flonum_2})} \returns an inexact complexnum \listlibraries \endentryheader \noindent The inexact complexnum produced by fl-make-rectangular has real part equal to \var{flonum_1} and imaginary part equal to \var{flonum_2}. \schemedisplay (fl-make-rectangular 2.0 -3.0) ;=> 2.0-3.0i (fl-make-rectangular 2.0 0.0) ;=> 2.0+0.0i (fl-make-rectangular 2.0 -0.0) ;=> 2.0-0.0i \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{cfl-real-part}{\categoryprocedure}{(cfl-real-part \var{cflonum})} \returns the real part of \var{cflonum} \formdef{cfl-imag-part}{\categoryprocedure}{(cfl-imag-part \var{cflonum})} \returns the imaginary part of \var{cflonum} \listlibraries \endentryheader %\noindent %Due to the flonum and inexact complexnum representations employed by %{\ChezScheme}, these operations require no memory %references and no heap allocation. \schemedisplay (cfl-real-part 2.0-3.0i) ;=> 2.0 (cfl-imag-part 2.0-3.0i) ;=> -3.0 (cfl-imag-part 2.0-0.0i) ;=> -0.0 (cfl-imag-part 2.0-inf.0i) ;=> -inf.0 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{cfl=}{\categoryprocedure}{(cfl= \var{cflonum} \dots)} \returns \scheme{#t} if its arguments are equal, \scheme{#f} otherwise \listlibraries \endentryheader \noskip\schemedisplay (cfl= 7.0+0.0i 7.0) ;=> #t (cfl= 1.0+2.0i 1.0+2.0i) ;=> #t (cfl= 1.0+2.0i 1.0-2.0i) ;=> #f \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{cfl+}{\categoryprocedure}{(cfl+ \var{cflonum} \dots)} \formdef{cfl*}{\categoryprocedure}{(cfl* \var{cflonum} \dots)} \formdef{cfl-}{\categoryprocedure}{(cfl- \var{cflonum_1} \var{cflonum_2} \dots)} \formdef{cfl/}{\categoryprocedure}{(cfl/ \var{cflonum_1} \var{cflonum_2} \dots)} \returns a cflonum \listlibraries \endentryheader \noindent These procedures compute the sum, difference, product, or quotient of inexact complex quantities, whether these quantities are represented by flonums or inexact complexnums. For example, if \scheme{cfl+} receives two flonum arguments $a$ and $b$, it returns the sum $a+b$; in this case, it behaves the same as \scheme{fl+}. With two inexact complexnum arguments $a+bi$ and $c+di$, it returns the sum $(a+c)+(b+d)i$. If one argument is a flonum $a$ and the other an inexact complexnum $c+di$, \scheme{cfl+} returns $(a+c)+di$. When passed zero arguments, \scheme{cfl+} returns 0.0 and \scheme{cfl*} returns 1.0. When passed one argument, \scheme{cfl-} returns the additive inverse of the argument, and \scheme{cfl/} returns the multiplicative inverse of the argument. When passed three or more arguments, \scheme{cfl-} returns the difference between its first and the sum of its remaining arguments, and \scheme{cfl/} returns the quotient of its first and the product of its remaining arguments. %On machines supporting the IEEE Standard for Floating Point Arithmetic %\cite{IEEEFLOAT}, %adding a flonum $a$ to a complexnum $c+di$ is not always the same %as adding the complexnum $a+0.0i$ to $c+di$. %The counter example is when $d=-0.0$, in which case the former leads %to $(a+c)-0.0i$ while the latter leads to $(a+c)+0.0i$. %{\ChezScheme} performs the former operation under the assumption that %the imaginary part of a flonum representing a complex quantity always %has an exact zero imaginary part. %We do not treat flonums $a$ as if they were equivalent to $a+0.0i$. %Although this would seem to simplify the semantics slightly, it leads %to unfortunate consistency problems. %For example, assuming that we do want to treat flonums $a$ as %equivalent to $a+0.0i$, the product $ab$ of two flonums $a$ and $b$ %would presumably be equivalent $ab+0.0i$. %However, if $a$ and $b$ are negative, the product of $a+0.0i$ and %$b+0.0i$ is actually $ab-0.0i$, not $ab+0.0i$. %Unfortunately, {\ChezScheme} currently represents imaginary numbers %as complexnums, so while 1.0 is assumed to have an exact %zero imaginary part, +1.0i is arbitrarily assigned a real part of %+0.0. \schemedisplay (cfl+) ;=> 0.0 (cfl*) ;=> 1.0 (cfl- 5.0+1.0i) ;=> -5.0-1.0i (cfl/ 2.0+2.0i) ;=> 0.25-0.25i (cfl+ 1.0+2.2i -3.7+5.3i) ;=> -2.7+7.5i (cfl+ 1.0 -5.3) ;=> -4.3 (cfl+ 1.0 2.0 -5.3i) ;=> 3.0-5.3i (cfl- 1.0+2.5i -3.7) ;=> 4.7+2.5i (cfl* 1.0+2.0i 3.0+4.0i) ;=> -5.0+10.0i (cfl/ -5.0+10.0i 1.0+2.0i 2.0) ;=> 1.5+2.0i \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{cfl-conjugate}{\categoryprocedure}{(cfl-conjugate \var{cflonum})} \returns complex conjugate of \var{cflonum} \listlibraries \endentryheader \noindent The procedure \scheme{cfl-conjugate}, when passed an inexact complex argument $a + bi$, returns its complex conjugate $a + (-b)i$. See also \index{\scheme{conjugate}}\scheme{conjugate}, which is a generic version of this operator that returns the complex conjugate of any valid representation for a complex number. \schemedisplay (cfl-conjugate 3.0) ;=> 3.0 (cfl-conjugate 3.0+4.0i) ;=> 3.0-4.0i (cfl-conjugate 1e-20-2e-30i) ;=> 1e-20+2e-30i \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{cfl-magnitude-squared}{\categoryprocedure}{(cfl-magnitude-squared \var{cflonum})} \returns magnitude of \var{cflonum} squared \listlibraries \endentryheader \noindent The procedure \scheme{cfl-magnitude-squared}, when passed an inexact complex argument $a + bi$ returns a flonum representing the magnitude of the argument squared, i.e., $a^2 + b^2$. See also \index{\scheme{magnitude-squared}}\scheme{magnitude-squared}, which is a generic version of this operator that returns the magnitude squared of any valid representation for a complex number. Both operations are similar to the \index{\scheme{magnitude}}\scheme{magnitude} procedure, which returns the magnitude, $sqrt(a^2 + b^2)$, of its generic complex argument. \schemedisplay (cfl-magnitude-squared 3.0) ;=> 9.0 (cfl-magnitude-squared 3.0-4.0i) ;=> 25.0 \endschemedisplay \section{Bitwise and Logical Operators\label{SECTNUMERICLOGICAL}} {\ChezScheme} provides a set of logical operators that allow exact integers (fixnums and bignums) to be treated as sets or sequences of bits. These operators include \scheme{logand} (bitwise logical \scheme{and}), \scheme{logior} (bitwise logical \scheme{or}), \scheme{logxor} (bitwise logical exclusive \scheme{or}), \scheme{lognot} (bitwise logical \scheme{not}), \scheme{logtest} (test multiple bits), \scheme{logbit?} (test single bit), \scheme{logbit0} (reset single bit), \scheme{logbit1} (set single bit), and \scheme{ash} (arithmetic shift). Each of these operators treats its arguments as two's complement integers, regardless of the underlying representation. This treatment can be exploited to represent infinite sets: a negative number represents an infinite number of one bits beyond the leftmost zero, and a nonnegative number represents an infinite number of zero bits beyond the leftmost one bit. Fixnum equivalents of the logical operators are provided, as \scheme{fxlogand}, \scheme{fxlogior}, \scheme{fxlogxor}, \scheme{fxlognot}, \scheme{fxlogtest}, \scheme{fxlogbit?}, \scheme{fxlogbit0}, and \scheme{fxlogbit1}. Three separate fixnum operators are provided for shifting: \scheme{fxsll} (shift-left logical), \scheme{fxsrl} (shift-right logical), \scheme{fxsra} (shift-right arithmetic). Logical and arithmetic shifts differ only for right shifts. Shift-right logical shifts in zero bits on the left end, and shift-right arithmetic replicates the sign bit. Logical shifts do not make sense for arbitrary-precision integers, since these have no ``left end'' into which bits must be shifted. %---------------------------------------------------------------------------- \entryheader \formdef{logand}{\categoryprocedure}{(logand \var{int} \dots)} \returns the logical ``and'' of the arguments \scheme{\var{int} \dots} \listlibraries \endentryheader \noindent The arguments must be exact integers (fixnums or bignums) and are treated as two's complement integers, regardless of the underlying representation. With no arguments, \scheme{logand} returns -1, i.e., all bits set. \schemedisplay (logand) ;=> -1 (logand 15) ;=> 15 (logand -1 -1) ;=> -1 (logand -1 0) ;=> 0 (logand 5 3) ;=> 1 (logand #x173C8D95 7) ;=> 5 (logand #x173C8D95 -8) ;=> #x173C8D90 (logand #b1100 #b1111 #b1101) ;=> #b1100 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{logior}{\categoryprocedure}{(logior \var{int} \dots)} \formdef{logor}{\categoryprocedure}{(logor \var{int} \dots)} \returns the logical ``or'' of the arguments \scheme{\var{int} \dots} \listlibraries \endentryheader \noindent The arguments must be exact integers (fixnums or bignums) and are treated as two's complement integers, regardless of the underlying representation. With no arguments, \scheme{logior} returns 0, i.e., all bits reset. \schemedisplay (logior) ;=> 0 (logior 15) ;=> 15 (logior -1 -1) ;=> -1 (logior -1 0) ;=> -1 (logior 5 3) ;=> 7 (logior #b111000 #b101010) ;=> #b111010 (logior #b1000 #b0100 #b0010) ;=> #b1110 (apply logior '(1 2 4 8 16)) ;=> 31 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{logxor}{\categoryprocedure}{(logxor \var{int} \dots)} \returns the logical ``exclusive or'' of the arguments \scheme{\var{int} \dots} \listlibraries \endentryheader \noindent The arguments must be exact integers (fixnums or bignums) and are treated as two's complement integers, regardless of the underlying representation. With no arguments, \scheme{logxor} returns 0, i.e., all bits reset. \schemedisplay (logxor) ;=> 0 (logxor 15) ;=> 15 (logxor -1 -1) ;=> 0 (logxor -1 0) ;=> -1 (logxor 5 3) ;=> 6 (logxor #b111000 #b101010) ;=> #b010010 (logxor #b1100 #b0100 #b0110) ;=> #b1110 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{lognot}{\categoryprocedure}{(lognot \var{int})} \returns the logical ``not'' of \var{int} \listlibraries \endentryheader \noindent The argument must be an exact integer (fixnum or bignum) and is treated as a two's complement integer, regardless of the underlying representation. \schemedisplay (lognot -1) ;=> 0 (lognot 0) ;=> -1 (lognot 7) ;=> -8 (lognot -8) ;=> 7 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{logbit?}{\categoryprocedure}{(logbit? \var{index} \var{int})} \returns \scheme{#t} if the specified bit is set, otherwise \scheme{#f} \listlibraries \endentryheader \noindent \var{index} must be a nonnegative exact integer. \var{int} must be an exact integer (fixnum or bignum) and is treated as a two's complement integer, regardless of the underlying representation. \scheme{logbit?} returns \scheme{#t} if the bit at index \var{index} of \var{int} is set (one) and \scheme{#f} otherwise. The index is zero-based, counting from the lowest-order toward higher-order bits. There is no upper limit on the index; for nonnegative values of \var{int}, the bits above the highest order set bit are all considered to be zero, and for negative values, the bits above the highest order reset bit are all considered to be one. \scheme{logbit?} is equivalent to \schemedisplay (lambda (k n) (not (zero? (logand n (ash 1 k))))) \endschemedisplay but more efficient. \schemedisplay (logbit? 0 #b1110) ;=> #f (logbit? 1 #b1110) ;=> #t (logbit? 2 #b1110) ;=> #t (logbit? 3 #b1110) ;=> #t (logbit? 4 #b1110) ;=> #f (logbit? 100 #b1110) ;=> #f (logbit? 0 -6) ;=> #f ; \var{the two's complement of} -6 \var{is} 1...1010 (logbit? 1 -6) ;=> #t (logbit? 2 -6) ;=> #f (logbit? 3 -6) ;=> #t (logbit? 100 -6) ;=> #t (logbit? (random 1000000) 0) ;=> #f (logbit? (random 1000000) -1) ;=> #t (logbit? 20000 (ash 1 20000)) ;=> #t \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{logtest}{\categoryprocedure}{(logtest \var{int_1} \var{int_2})} \returns \scheme{#t} if any common bits are set, otherwise \scheme{#f} \listlibraries \endentryheader \noindent The arguments must be exact integers (fixnums or bignums) and are treated as two's complement integers, regardless of the underlying representation. \scheme{logtest} returns \scheme{#t} if any bit set in one argument is also set in the other. It returns \scheme{#f} if the two arguments have no set bits in common. \scheme{logtest} is equivalent to \schemedisplay (lambda (n1 n2) (not (zero? (logand n1 n2)))) \endschemedisplay but more efficient. \schemedisplay (logtest #b10001 #b1110) ;=> #f (logtest #b10101 #b1110) ;=> #t (logtest #b111000 #b110111) ;=> #t (logtest #b101 -6) ;=> #f ; \var{the two's complement of} -6 \var{is} 1...1010 (logtest #b1000 -6) ;=> #t (logtest 100 -6) ;=> #t (logtest (+ (random 1000000) 1) 0) ;=> #f (logtest (+ (random 1000000) 1) -1) ;=> #t (logtest (ash #b101 20000) (ash #b111 20000)) ;=> #t \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{logbit0}{\categoryprocedure}{(logbit0 \var{index} \var{int})} \returns the result of clearing bit \var{index} of \var{int} \listlibraries \endentryheader \noindent \var{index} must be a nonnegative exact integer. \var{int} must be an exact integer (fixnum or bignum) and is treated as a two's complement integer, regardless of the underlying representation. The index is zero-based, counting from the lowest-order toward higher-order bits. As with \scheme{logbit?}, there is no upper limit on the index. \scheme{logbit0} is equivalent to \schemedisplay (lambda (i n) (logand (lognot (ash 1 i)) n)) \endschemedisplay but more efficient. \schemedisplay (logbit0 3 #b10101010) ;=> #b10100010 (logbit0 4 #b10101010) ;=> #b10101010 (logbit0 0 -1) ;=> -2 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{logbit1}{\categoryprocedure}{(logbit1 \var{index} \var{int})} \returns the result of setting bit \var{index} of \var{int} \listlibraries \endentryheader \noindent \var{index} must be a nonnegative exact integer. \var{int} must be an exact integer (fixnum or bignum) and is treated as a two's complement integer, regardless of the underlying representation. The index is zero-based, counting from the lowest-order toward higher-order bits. As with \scheme{logbit?}, there is no upper limit on the index. \scheme{logbit1} is equivalent to \schemedisplay (lambda (i n) (logor (ash 1 i) n)) \endschemedisplay but more efficient. \schemedisplay (logbit1 3 #b10101010) ;=> #b10101010 (logbit1 4 #b10101010) ;=> #b10111010 (logbit1 4 0) ;=> #b10000 (logbit1 0 -2) ;=> -1 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{ash}{\categoryprocedure}{(ash \var{int} \var{count})} \returns \var{int} shifted left arithmetically by \var{count}. \listlibraries \endentryheader \noindent Both arguments must be exact integers. The first argument is treated as a two's complement integer, regardless of the underlying representation. If \var{count} is negative, \var{int} is shifted right by $-$\var{count} bits. \schemedisplay (ash 8 0) ;=> 8 (ash 8 2) ;=> 32 (ash 8 -2) ;=> 2 (ash -1 2) ;=> -4 (ash -1 -2) ;=> -1 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{fxlogand}{\categoryprocedure}{(fxlogand \var{fixnum} \dots)} \returns the logical ``and'' of the arguments \scheme{\var{fixnum} \dots} \listlibraries \endentryheader \noindent The arguments are treated as two's complement integers, regardless of the underlying representation. With no arguments, \scheme{fxlogand} returns -1, i.e., all bits set. \schemedisplay (fxlogand) ;=> -1 (fxlogand 15) ;=> 15 (fxlogand -1 -1) ;=> -1 (fxlogand -1 0) ;=> 0 (fxlogand 5 3) ;=> 1 (fxlogand #b111000 #b101010) ;=> #b101000 (fxlogand #b1100 #b1111 #b1101) ;=> #b1100 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{fxlogior}{\categoryprocedure}{(fxlogior \var{fixnum} \dots)} \formdef{fxlogor}{\categoryprocedure}{(fxlogor \var{fixnum} \dots)} \returns the logical ``or'' of the arguments \scheme{\var{fixnum} \dots} \listlibraries \endentryheader \noindent The arguments are treated as two's complement integers, regardless of the underlying representation. With no arguments, \scheme{fxlogior} returns 0, i.e., all bits reset. \schemedisplay (fxlogior) ;=> 0 (fxlogior 15) ;=> 15 (fxlogior -1 -1) ;=> -1 (fxlogior -1 0) ;=> -1 (fxlogior #b111000 #b101010) ;=> #b111010 (fxlogior #b1000 #b0100 #b0010) ;=> #b1110 (apply fxlogior '(1 2 4 8 16)) ;=> 31 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{fxlogxor}{\categoryprocedure}{(fxlogxor \var{fixnum} \dots)} \returns the logical ``exclusive or'' of the arguments \scheme{\var{fixnum} \dots} \listlibraries \endentryheader \noindent The arguments are treated as two's complement integers, regardless of the underlying representation. With no arguments, \scheme{fxlogxor} returns 0, i.e., all bits reset. \schemedisplay (fxlogxor) ;=> 0 (fxlogxor 15) ;=> 15 (fxlogxor -1 -1) ;=> 0 (fxlogxor -1 0) ;=> -1 (fxlogxor 5 3) ;=> 6 (fxlogxor #b111000 #b101010) ;=> #b010010 (fxlogxor #b1100 #b0100 #b0110) ;=> #b1110 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{fxlognot}{\categoryprocedure}{(fxlognot \var{fixnum})} \returns the logical ``not'' of \var{fixnum} \listlibraries \endentryheader \noindent The argument is treated as a two's complement integer, regardless of the underlying representation. \schemedisplay (fxlognot -1) ;=> 0 (fxlognot 0) ;=> -1 (fxlognot 1) ;=> -2 (fxlognot -2) ;=> 1 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{fxlogbit?}{\categoryprocedure}{(fxlogbit? \var{index} \var{fixnum})} \returns \scheme{#t} if the specified bit is set, otherwise \scheme{#f} \listlibraries \endentryheader \noindent \var{index} must be a nonnegative fixnum. \var{fixnum} is treated as a two's complement integer, regardless of the underlying representation. \scheme{fxlogbit?} returns \scheme{#t} if the bit at index \var{index} of \var{fixnum} is set (one) and \scheme{#f} otherwise. The index is zero-based, counting from the lowest-order toward higher-order bits. The index is limited only by the fixnum range; for nonnegative values of \var{fixnum}, the bits above the highest order set bit are all considered to be zero, and for negative values, the bits above the highest order reset bit are all considered to be one. \schemedisplay (fxlogbit? 0 #b1110) ;=> #f (fxlogbit? 1 #b1110) ;=> #t (fxlogbit? 2 #b1110) ;=> #t (fxlogbit? 3 #b1110) ;=> #t (fxlogbit? 4 #b1110) ;=> #f (fxlogbit? 100 #b1110) ;=> #f (fxlogbit? 0 -6) ;=> #f ; \var{the two's complement of} -6 \var{is} 1...1010 (fxlogbit? 1 -6) ;=> #t (fxlogbit? 2 -6) ;=> #f (fxlogbit? 3 -6) ;=> #t (fxlogbit? 100 -6) ;=> #t (fxlogbit? (random 1000000) 0) ;=> #f (fxlogbit? (random 1000000) -1) ;=> #t \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{fxlogtest}{\categoryprocedure}{(fxlogtest \var{fixnum_1} \var{fixnum_2})} \returns \scheme{#t} if any common bits are set, otherwise \scheme{#f} \listlibraries \endentryheader \noindent The arguments are treated as two's complement integers, regardless of the underlying representation. \scheme{fxlogtest} returns \scheme{#t} if any bit set in one argument is also set in the other. It returns \scheme{#f} if the two arguments have no set bits in common. \schemedisplay (fxlogtest #b10001 #b1110) ;=> #f (fxlogtest #b10101 #b1110) ;=> #t (fxlogtest #b111000 #b110111) ;=> #t (fxlogtest #b101 -6) ;=> #f ; \var{the two's complement of} -6 \var{is} 1...1010 (fxlogtest #b1000 -6) ;=> #t (fxlogtest 100 -6) ;=> #t (fxlogtest (+ (random 1000000) 1) 0) ;=> #f (fxlogtest (+ (random 1000000) 1) -1) ;=> #t \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{fxlogbit0}{\categoryprocedure}{(fxlogbit0 \var{index} \var{fixnum})} \returns the result of clearing bit \var{index} of \var{fixnum} \listlibraries \endentryheader \noindent \var{fixnum} is treated as a two's complement integer, regardless of the underlying representation. \var{index} must be nonnegative and less than the number of bits in a fixnum, excluding the sign bit, i.e., less than \scheme{(integer-length (most-positive-fixnum))}. The index is zero-based, counting from the lowest-order toward higher-order bits. \scheme{fxlogbit0} is equivalent to \schemedisplay (lambda (i n) (fxlogand (fxlognot (fxsll 1 i)) n)) \endschemedisplay but more efficient. \schemedisplay (fxlogbit0 3 #b10101010) ;=> #b10100010 (fxlogbit0 4 #b10101010) ;=> #b10101010 (fxlogbit0 0 -1) ;=> -2 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{fxlogbit1}{\categoryprocedure}{(fxlogbit1 \var{index} \var{fixnum})} \returns the result of setting bit \var{index} of \var{fixnum} \listlibraries \endentryheader \noindent \var{fixnum} is treated as a two's complement integer, regardless of the underlying representation. \var{index} must be nonnegative and less than the number of bits in a fixnum, excluding the sign bit, i.e., less than \scheme{(integer-length (most-positive-fixnum))}. The index is zero-based, counting from the lowest-order toward higher-order bits. \scheme{fxlogbit1} is equivalent to \schemedisplay (lambda (i n) (fxlogor (fxsll 1 i) n)) \endschemedisplay but more efficient. \schemedisplay (fxlogbit1 3 #b10101010) ;=> #b10101010 (fxlogbit1 4 #b10101010) ;=> #b10111010 (fxlogbit1 4 0) ;=> #b10000 (fxlogbit1 0 -2) ;=> -1 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{fxsll}{\categoryprocedure}{(fxsll \var{fixnum} \var{count})} \returns \var{fixnum} shifted left by \var{count} \listlibraries \endentryheader \noindent \var{fixnum} is treated as a two's complement integer, regardless of the underlying representation. \var{count} must be nonnegative and not more than the number of bits in a fixnum, i.e., \scheme{(+ (integer-length (most-positive-fixnum)) 1)}. An exception is raised with condition-type \scheme{&implementation-restriction} if the result cannot be represented as a fixnum. \schemedisplay (fxsll 1 2) ;=> 4 (fxsll -1 2) ;=> -4 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{fxsrl}{\categoryprocedure}{(fxsrl \var{fixnum} \var{count})} \returns \var{fixnum} logically shifted right by \var{count} \listlibraries \endentryheader \noindent \var{fixnum} is treated as a two's complement integer, regardless of the underlying representation. \var{count} must be nonnegative and not more than the number of bits in a fixnum, i.e., \scheme{(+ (integer-length (most-positive-fixnum)) 1)}. \schemedisplay (fxsrl 4 2) ;=> 1 (= (fxsrl -1 1) (most-positive-fixnum)) ;=> #t \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{fxsra}{\categoryprocedure}{(fxsra \var{fixnum} \var{count})} \returns \var{fixnum} arithmetically shifted right by \var{count} \listlibraries \endentryheader \noindent \var{fixnum} is treated as a two's complement integer, regardless of the underlying representation. \var{count} must be nonnegative and not more than the number of bits in a fixnum, i.e., \scheme{(+ (integer-length (most-positive-fixnum)) 1)}. \schemedisplay (fxsra 64 3) ;=> 8 (fxsra -1 1) ;=> -1 (fxsra -64 3) ;=> -8 \endschemedisplay \section{Random Number Generation\label{SECTNUMERICRANDOM}} %---------------------------------------------------------------------------- \noskipentryheader \formdef{random}{\categoryprocedure}{(random \var{real})} \returns a nonnegative pseudo-random number less than \var{real} \listlibraries \endnoskipentryheader \noindent \var{real} must be a positive integer or positive inexact real number. \schemedisplay (random 1) ;=> 0 (random 1029384535235) ;=> 1029384535001, \var{every} \var{now} \var{and} \var{then} (random 1.0) ;=> 0.5, \var{every} \var{now} \var{and} \var{then} \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{random-seed}{\categorythreadparameter}{random-seed} \listlibraries \endentryheader \noindent The \index{random number generator}random number generator allows the current random seed to be obtained and modified via the parameter \scheme{random-seed}. When called without arguments, \scheme{random-seed} returns the current random seed. When called with one argument, which must be a nonnegative exact integer ranging from 1 through $2^{32}-1$, \scheme{random-seed} sets the current random seed to the argument. \schemedisplay (let ([s (random-seed)]) (let ([r1 (random 1.0)]) (random-seed s) (eqv? (random 1.0) r1))) ;=> #t \endschemedisplay \section{Miscellaneous Numeric Operations\label{SECTNUMERICMISC}} %---------------------------------------------------------------------------- \noskipentryheader \formdef{=}{\categoryprocedure}{(= \var{num_1} \var{num_2} \var{num_3} \dots)} \formdef{<}{\categoryprocedure}{(< \var{real_1} \var{real_2} \var{real_3} \dots)} \formdef{>}{\categoryprocedure}{(> \var{real_1} \var{real_2} \var{real_3} \dots)} \formdef{<=}{\categoryprocedure}{(<= \var{real_1} \var{real_2} \var{real_3} \dots)} \formdef{>=}{\categoryprocedure}{(>= \var{real_1} \var{real_2} \var{real_3} \dots)} \returns \scheme{#t} if the relation holds, \scheme{#f} otherwise \listlibraries \endnoskipentryheader \noindent These predicates are identical to the Revised$^6$ Report counterparts, except they are extended to accept one or more rather than two or more arguments. When passed one argument, each of these predicates returns \scheme{#t}. \schemedisplay (> 3/4) ;=> #t (< 3/4) ;=> #t (= 3/4) ;=> #t \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{1+}{\categoryprocedure}{(1+ \var{num})} \formdef{add1}{\categoryprocedure}{(add1 \var{num})} \formdef{1-}{\categoryprocedure}{(1- \var{num})} \formdef{-1+}{\categoryprocedure}{(-1+ \var{num})} \formdef{sub1}{\categoryprocedure}{(sub1 \var{num})} \returns \var{num} plus 1 or \var{num} minus 1 \listlibraries \endentryheader \noindent \scheme{1+} and \scheme{add1} are equivalent to \scheme{(lambda (x) (+ x 1))}; \scheme{1-}, \scheme{-1+}, and \scheme{sub1} are equivalent to \scheme{(lambda (x) (- x 1))}. \schemedisplay (define plus ; x should be a nonnegative integer (lambda (x y) (if (zero? x) y (plus (1- x) (1+ y))))) (plus 7 8) ;=> 15 (define double ; x should be a nonnegative integer (lambda (x) (if (zero? x) 0 (add1 (add1 (double (sub1 x))))))) (double 7) ;=> 14 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{expt-mod}{\categoryprocedure}{(expt-mod \var{int_1} \var{int_2} \var{int_3})} \returns \var{int_1} raised to the \var{int_2} power, modulo \var{int_3} \listlibraries \endentryheader \noindent \var{int_1}, \var{int_2} and \var{int_3} must be nonnegative integers. \scheme{expt-mod} performs its computation in such a way that the intermediate results are never much larger than \var{int_3}. This means that when \var{int_2} is large, \scheme{expt-mod} is more efficient than the equivalent procedure \scheme{(lambda (x y z) (modulo (expt x y) z))}. \schemedisplay (expt-mod 2 4 3) ;=> 1 (expt-mod 2 76543 76543) ;=> 2 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{isqrt}{\categoryprocedure}{(isqrt \var{n})} \returns the integer square root of \var{n} \listlibraries \endentryheader \noindent \var{n} must be a nonnegative integer. The integer square root of $n$ is defined to be $\bigl\lfloor\sqrt n\bigr\rfloor$. \schemedisplay (isqrt 0) ;=> 0 (isqrt 16) ;=> 4 (isqrt 16.0) ;=> 4.0 (isqrt 20) ;=> 4 (isqrt 20.0) ;=> 4.0 (isqrt (* 2 (expt 10 20))) ;=> 14142135623 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{integer-length}{\categoryprocedure}{(integer-length \var{n})} \returns see below \listlibraries \endentryheader \noindent The procedure \scheme{integer-length} returns the length in bits of the smallest two's complement representation for \var{n}, with an assumed leading 1 (sign) bit for negative numbers. For zero, \scheme{integer-length} returns 0. \schemedisplay (integer-length 0) ;=> 0 (integer-length 1) ;=> 1 (integer-length 2) ;=> 2 (integer-length 3) ;=> 2 (integer-length 4) ;=> 3 (integer-length #b10000000) ;=> 8 (integer-length #b11111111) ;=> 8 (integer-length -1) ;=> 0 (integer-length -2) ;=> 1 (integer-length -3) ;=> 2 (integer-length -4) ;=> 2 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{nonpositive?}{\categoryprocedure}{(nonpositive? \var{real})} \returns \scheme{#t} if \var{real} is not greater than zero, \scheme{#f} otherwise \listlibraries \endentryheader \noindent \scheme{nonpositive?} is equivalent to \scheme{(lambda (x) (<= x 0))}. \schemedisplay (nonpositive? 128) ;=> #f (nonpositive? 0.0) ;=> #t (nonpositive? 1.8e-15) ;=> #f (nonpositive? -2/3) ;=> #t \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{nonnegative?}{\categoryprocedure}{(nonnegative? \var{real})} \returns \scheme{#t} if \var{real} is not less than zero, \scheme{#f} otherwise \listlibraries \endentryheader \noindent \scheme{nonnegative?} is equivalent to \scheme{(lambda (x) (>= x 0))}. \schemedisplay (nonnegative? -65) ;=> #f (nonnegative? 0) ;=> #t (nonnegative? -0.0121) ;=> #f (nonnegative? 15/16) ;=> #t \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{conjugate}{\categoryprocedure}{(conjugate \var{num})} \returns complex conjugate of \var{num} \listlibraries \endentryheader \noindent The procedure \scheme{conjugate}, when passed a complex argument $a + bi$, returns its complex conjugate $a + (-b)i$. \schemedisplay (conjugate 3.0+4.0i) ;=> 3.0-4.0i (conjugate 1e-20-2e-30i) ;=> 1e-20+2e-30i (conjugate 3) ;=> 3 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{magnitude-squared}{\categoryprocedure}{(magnitude-squared \var{num})} \returns magnitude of \var{num} squared \listlibraries \endentryheader \noindent The procedure \scheme{magnitude-squared}, when passed a complex argument $a + bi$ returns its magnitude squared, i.e., $a^2 + b^2$. \schemedisplay (magnitude-squared 3.0-4.0i) ;=> 25.0 (magnitude-squared 3.0) ;=> 9.0 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{sinh}{\categoryprocedure}{(sinh \var{num})} \formdef{cosh}{\categoryprocedure}{(cosh \var{num})} \formdef{tanh}{\categoryprocedure}{(tanh \var{num})} \returns the hyperbolic sine, cosine, or tangent of \var{num} \listlibraries \endentryheader \schemedisplay (sinh 0.0) ;=> 0.0 (cosh 0.0) ;=> 1.0 (tanh -0.0) ;=> -0.0 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{asinh}{\categoryprocedure}{(asinh \var{num})} \formdef{acosh}{\categoryprocedure}{(acosh \var{num})} \formdef{atanh}{\categoryprocedure}{(atanh \var{num})} \returns the hyperbolic arc sine, arc cosine, or arc tangent of \var{num} \listlibraries \endentryheader \schemedisplay (acosh 0.0) ;=> 0.0+1.5707963267948966i (acosh 1.0) ;=> 0.0 (atanh -1.0) ;=> -inf.0 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{string->number}{\categoryprocedure}{(string->number \var{string})} \formdef{string->number}{\categoryprocedure}{(string->number \var{string} \var{radix})} \returns the number represented by \var{string}, or \scheme{#f} \listlibraries \endentryheader \noindent This procedure is identical to the Revised$^6$ Report version except that \scheme{radix} may be any exact integer between 2 and 36, inclusive. The Revised$^6$ Report version requires radix to be in the set $\{2,8,10,16\}$. \schemedisplay (string->number "211012" 3) ;=> 559 (string->number "tobeornottobe" 36) ;=> 140613689159812836698 \endschemedisplay %---------------------------------------------------------------------------- \entryheader \formdef{number->string}{\categoryprocedure}{(number->string \var{num})} \formdef{number->string}{\categoryprocedure}{(number->string \var{num} \var{radix})} \formdef{number->string}{\categoryprocedure}{(number->string \var{num} \var{radix} \var{precision})} \returns an external representation of \var{num} as a string \listlibraries \endentryheader \noindent This procedure is identical to the Revised$^6$ Report version except that \scheme{radix} may be any exact integer between 2 and 36, inclusive. The Revised$^6$ Report version requires radix to be in the set $\{2,8,10,16\}$. \schemedisplay (number->string 10000 4) ;=> "2130100" (number->string 10000 27) ;=> "DJA" \endschemedisplay