2021-11-09 17:05:20 +01:00
# FastAPI Integration
## Introduction
2021-11-13 02:38:26 +01:00
Good news: Redis OM was specifically designed to integrate with FastAPI!
2021-11-09 17:05:20 +01:00
2021-11-13 02:38:26 +01:00
This section includes a complete example showing how to integrate Redis OM with FastAPI.
2021-11-09 17:05:20 +01:00
## Concepts
### Every Redis OM Model is also a Pydantic model
2021-11-09 17:06:32 +01:00
Every Redis OM model is also a Pydantic model, so you can define a model and then use the model class anywhere that FastAPI expects a Pydantic model.
2021-11-09 17:05:20 +01:00
This means a couple of things:
1. A Redis OM model can be used for request body validation
2. Redis OM models show up in the auto-generated API documentation
### Cache vs. Data
2021-11-09 17:06:51 +01:00
Redis works well as either a durable data store or a cache, but the optimal Redis configuration is often different between these two use cases.
2021-11-09 17:05:20 +01:00
You almost always want to use a Redis instance tuned for caching when you're caching and a separate Redis instance tuned for data durability for storing application state.
This example shows how to manage these two uses of Redis within the same application. The app uses a FastAPI caching framework and dedicated caching instance of Redis for caching, and a separate Redis instance tuned for durability for Redis OM models.
## Example app code
2021-11-25 16:33:28 +01:00
Let's look at an example FastAPI app that uses Redis OM.
**NOTE**: This example code requires dependencies to run. To install the dependencies, first clone the [redis-om-fastapi ](https://github.com/redis-developer/redis-om-fastapi ) repository from GitHub. Then follow the installation steps later in this document or in that repository's README.md file.
2021-11-09 17:05:20 +01:00
```python
import datetime
from typing import Optional
import aioredis
from fastapi import FastAPI, HTTPException
from starlette.requests import Request
from starlette.responses import Response
from fastapi_cache import FastAPICache
from fastapi_cache.backends.redis import RedisBackend
from fastapi_cache.decorator import cache
from pydantic import EmailStr
2021-11-10 00:59:10 +01:00
from redis_om import HashModel, NotFoundError
from redis_om import get_redis_connection
2021-11-09 17:05:20 +01:00
# This Redis instance is tuned for durability.
REDIS_DATA_URL = "redis://localhost:6380"
# This Redis instance is tuned for cache performance.
REDIS_CACHE_URL = "redis://localhost:6381"
class Customer(HashModel):
first_name: str
last_name: str
email: EmailStr
join_date: datetime.date
age: int
bio: Optional[str]
app = FastAPI()
@app .post("/customer")
async def save_customer(customer: Customer):
# We can save the model to Redis by calling `save()` :
return customer.save()
@app .get("/customers")
async def list_customers(request: Request, response: Response):
# To retrieve this customer with its primary key, we use `Customer.get()` :
return {"customers": Customer.all_pks()}
@app .get("/customer/{pk}")
@cache (expire=10)
async def get_customer(pk: str, request: Request, response: Response):
# To retrieve this customer with its primary key, we use `Customer.get()` :
try:
return Customer.get(pk)
except NotFoundError:
raise HTTPException(status_code=404, detail="Customer not found")
@app .on_event("startup")
async def startup():
2021-11-10 00:59:10 +01:00
r = aioredis.from_url(REDIS_CACHE_URL, encoding="utf8",
decode_responses=True)
2021-11-09 17:05:20 +01:00
FastAPICache.init(RedisBackend(r), prefix="fastapi-cache")
# You can set the Redis OM URL using the REDIS_OM_URL environment
# variable, or by manually creating the connection using your model's
# Meta object.
2021-11-10 00:59:10 +01:00
Customer.Meta.database = get_redis_connection(url=REDIS_DATA_URL,
decode_responses=True)
2021-11-09 17:05:20 +01:00
```
## Testing the app
2021-11-25 16:27:22 +01:00
You should install the app's dependencies first. This app uses Poetry, so you'll want to make sure you have Poetry installed first:
2021-11-09 17:05:20 +01:00
$ pip install poetry
Then install the dependencies:
$ poetry install
Next, start the server:
2021-11-25 16:27:22 +01:00
$ poetry run uvicorn --reload main:app
2021-11-09 17:05:20 +01:00
Then, in another shell, create a customer:
2021-11-18 22:41:22 +01:00
```
2021-11-09 17:05:20 +01:00
$ curl -X POST "http://localhost:8000/customer" -H 'Content-Type: application/json' -d '{"first_name":"Andrew","last_name":"Brookins","email":"a@example.com","age":"38","join_date":"2020
-01-02"}'
{"pk":"01FM2G8EP38AVMH7PMTAJ123TA","first_name":"Andrew","last_name":"Brookins","email":"a@example.com","join_date":"2020-01-02","age":38,"bio":""}
2021-11-18 22:41:22 +01:00
```
2021-11-25 16:27:22 +01:00
Get a copy of the value for "pk," which is the model's primary key, and make another request to get that customer:
2021-11-09 17:05:20 +01:00
$ curl "http://localhost:8000/customer/01FM2G8EP38AVMH7PMTAJ123TA"
{"pk":"01FM2G8EP38AVMH7PMTAJ123TA","first_name":"Andrew","last_name":"Brookins","email":"a@example.com","join_date":"2020-01-02","age":38,"bio":""}
You can also get a list of all customer PKs:
$ curl "http://localhost:8000/customers"
2021-11-13 02:38:26 +01:00
{"customers":["01FM2G8EP38AVMH7PMTAJ123TA"]}
2021-11-18 22:41:22 +01:00
## Redis OM with Asyncio
2021-11-13 02:38:26 +01:00
Redis OM is designed to work with asyncio, so you can use Redis OM models asynchronously within FastAPI applications.
The only difference is that you import the Redis OM models from the `aredis_om` module instead of the `redis_om` module.
Here is the previous FastAPI app, but using asyncio-compatible Redis OM code:
```python
import datetime
from typing import Optional
import aioredis
from fastapi import FastAPI, HTTPException
from starlette.requests import Request
from starlette.responses import Response
from fastapi_cache import FastAPICache
from fastapi_cache.backends.redis import RedisBackend
from fastapi_cache.decorator import cache
from pydantic import EmailStr
from aredis_om import HashModel, NotFoundError # < - Notice , we import from aredis_om
from aredis_om import get_redis_connection
# This Redis instance is tuned for durability.
REDIS_DATA_URL = "redis://localhost:6380"
# This Redis instance is tuned for cache performance.
REDIS_CACHE_URL = "redis://localhost:6381"
class Customer(HashModel):
first_name: str
last_name: str
email: EmailStr
join_date: datetime.date
age: int
bio: Optional[str]
app = FastAPI()
@app .post("/customer")
async def save_customer(customer: Customer):
# We can save the model to Redis by calling `save()` :
return await customer.save() # < - We use await here
@app .get("/customers")
async def list_customers(request: Request, response: Response):
# To retrieve this customer with its primary key, we use `Customer.get()` :
return {"customers": await Customer.all_pks()} # < - We also use await here
@app .get("/customer/{pk}")
@cache (expire=10)
async def get_customer(pk: str, request: Request, response: Response):
# To retrieve this customer with its primary key, we use `Customer.get()` :
try:
return await Customer.get(pk) # < - And , finally , one more await !
except NotFoundError:
raise HTTPException(status_code=404, detail="Customer not found")
@app .on_event("startup")
async def startup():
r = aioredis.from_url(REDIS_CACHE_URL, encoding="utf8",
decode_responses=True)
FastAPICache.init(RedisBackend(r), prefix="fastapi-cache")
# You can set the Redis OM URL using the REDIS_OM_URL environment
# variable, or by manually creating the connection using your model's
# Meta object.
Customer.Meta.database = get_redis_connection(url=REDIS_DATA_URL,
decode_responses=True)
```
**NOTE:** The modules `redis_om` and `aredis_om` are identical in almost every
way. The only difference is that the `aredis_om` returns coroutines that you must
`await` .