FastAPI integration example
This commit is contained in:
		
							parent
							
								
									3f45793bae
								
							
						
					
					
						commit
						e58ab1b8f6
					
				
					 1 changed files with 133 additions and 0 deletions
				
			
		
							
								
								
									
										133
									
								
								docs/fastapi_integration.md
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										133
									
								
								docs/fastapi_integration.md
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,133 @@
 | 
			
		|||
# FastAPI Integration
 | 
			
		||||
 | 
			
		||||
## Introduction
 | 
			
		||||
 | 
			
		||||
This section includes a complete example showing how to integrate Redis OM with FastAPI.
 | 
			
		||||
 | 
			
		||||
Good news: Redis OM was **specifically designed to integrate with FastAPI**!
 | 
			
		||||
 | 
			
		||||
## Concepts
 | 
			
		||||
 | 
			
		||||
### Every Redis OM Model is also a Pydantic model
 | 
			
		||||
 | 
			
		||||
Every Redis OM model is also a Pydantic model, so you can define a model and then pass the model class into any location that FastAPI expects a Pydantic model.
 | 
			
		||||
 | 
			
		||||
This means a couple of things:
 | 
			
		||||
 | 
			
		||||
1. A Redis OM model can be used for request body validation
 | 
			
		||||
2. Redis OM models show up in the auto-generated API documentation
 | 
			
		||||
 | 
			
		||||
### Cache vs. Data
 | 
			
		||||
 | 
			
		||||
Redis works well as either a durable data store or a cache, but the optiomal Redis configuration is often different between these two use cases.
 | 
			
		||||
 | 
			
		||||
You almost always want to use a Redis instance tuned for caching when you're caching and a separate Redis instance tuned for data durability for storing application state.
 | 
			
		||||
 | 
			
		||||
This example shows how to manage these two uses of Redis within the same application. The app uses a FastAPI caching framework and dedicated caching instance of Redis for caching, and a separate Redis instance tuned for durability for Redis OM models.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
## Example app code
 | 
			
		||||
 | 
			
		||||
This is a complete example that you can run as-is:
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
import datetime
 | 
			
		||||
from typing import Optional
 | 
			
		||||
 | 
			
		||||
import aioredis
 | 
			
		||||
 | 
			
		||||
from fastapi import FastAPI, HTTPException
 | 
			
		||||
from starlette.requests import Request
 | 
			
		||||
from starlette.responses import Response
 | 
			
		||||
 | 
			
		||||
from fastapi_cache import FastAPICache
 | 
			
		||||
from fastapi_cache.backends.redis import RedisBackend
 | 
			
		||||
from fastapi_cache.decorator import cache
 | 
			
		||||
 | 
			
		||||
from pydantic import EmailStr
 | 
			
		||||
 | 
			
		||||
from redis_om.model import HashModel, NotFoundError
 | 
			
		||||
from redis_om.connections import get_redis_connection
 | 
			
		||||
 | 
			
		||||
# This Redis instance is tuned for durability.
 | 
			
		||||
REDIS_DATA_URL = "redis://localhost:6380"
 | 
			
		||||
 | 
			
		||||
# This Redis instance is tuned for cache performance.
 | 
			
		||||
REDIS_CACHE_URL = "redis://localhost:6381"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Customer(HashModel):
 | 
			
		||||
    first_name: str
 | 
			
		||||
    last_name: str
 | 
			
		||||
    email: EmailStr
 | 
			
		||||
    join_date: datetime.date
 | 
			
		||||
    age: int
 | 
			
		||||
    bio: Optional[str]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
app = FastAPI()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@app.post("/customer")
 | 
			
		||||
async def save_customer(customer: Customer):
 | 
			
		||||
    # We can save the model to Redis by calling `save()`:
 | 
			
		||||
    return customer.save()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@app.get("/customers")
 | 
			
		||||
async def list_customers(request: Request, response: Response):
 | 
			
		||||
    # To retrieve this customer with its primary key, we use `Customer.get()`:
 | 
			
		||||
    return {"customers": Customer.all_pks()}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@app.get("/customer/{pk}")
 | 
			
		||||
@cache(expire=10)
 | 
			
		||||
async def get_customer(pk: str, request: Request, response: Response):
 | 
			
		||||
    # To retrieve this customer with its primary key, we use `Customer.get()`:
 | 
			
		||||
    try:
 | 
			
		||||
        return Customer.get(pk)
 | 
			
		||||
    except NotFoundError:
 | 
			
		||||
        raise HTTPException(status_code=404, detail="Customer not found")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@app.on_event("startup")
 | 
			
		||||
async def startup():
 | 
			
		||||
    r =  aioredis.from_url(REDIS_CACHE_URL, encoding="utf8", decode_responses=True)
 | 
			
		||||
    FastAPICache.init(RedisBackend(r), prefix="fastapi-cache")
 | 
			
		||||
 | 
			
		||||
    # You can set the Redis OM URL using the REDIS_OM_URL environment
 | 
			
		||||
    # variable, or by manually creating the connection using your model's
 | 
			
		||||
    # Meta object.
 | 
			
		||||
    Customer.Meta.database = get_redis_connection(url=REDIS_DATA_URL, decode_responses=True)
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
## Testing the app
 | 
			
		||||
 | 
			
		||||
You should install the app's dependencies first. This app uses Poetry, so you'll want to make sure you have that installed first:
 | 
			
		||||
 | 
			
		||||
    $ pip install poetry
 | 
			
		||||
 | 
			
		||||
Then install the dependencies:
 | 
			
		||||
 | 
			
		||||
    $ poetry install
 | 
			
		||||
 | 
			
		||||
Next, start the server:
 | 
			
		||||
 | 
			
		||||
    $ poetry run uvicorn --reload main:test
 | 
			
		||||
 | 
			
		||||
Then, in another shell, create a customer:
 | 
			
		||||
 | 
			
		||||
    $ curl -X POST -H 'Content-Length: 0' "http://localhost:8000/customer"
 | 
			
		||||
    $ curl -X POST  "http://localhost:8000/customer" -H 'Content-Type: application/json' -d '{"first_name":"Andrew","last_name":"Brookins","email":"a@example.com","age":"38","join_date":"2020
 | 
			
		||||
-01-02"}'
 | 
			
		||||
    {"pk":"01FM2G8EP38AVMH7PMTAJ123TA","first_name":"Andrew","last_name":"Brookins","email":"a@example.com","join_date":"2020-01-02","age":38,"bio":""}
 | 
			
		||||
 | 
			
		||||
Get a copy of the value for "pk" and make another request to get that customer:
 | 
			
		||||
 | 
			
		||||
    $ curl "http://localhost:8000/customer/01FM2G8EP38AVMH7PMTAJ123TA"
 | 
			
		||||
    {"pk":"01FM2G8EP38AVMH7PMTAJ123TA","first_name":"Andrew","last_name":"Brookins","email":"a@example.com","join_date":"2020-01-02","age":38,"bio":""}
 | 
			
		||||
 | 
			
		||||
You can also get a list of all customer PKs:
 | 
			
		||||
 | 
			
		||||
    $ curl "http://localhost:8000/customers"
 | 
			
		||||
    {"customers":["01FM2G8EP38AVMH7PMTAJ123TA"]}
 | 
			
		||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue