FastAPI integration example
This commit is contained in:
parent
3f45793bae
commit
e58ab1b8f6
1 changed files with 133 additions and 0 deletions
133
docs/fastapi_integration.md
Normal file
133
docs/fastapi_integration.md
Normal file
|
@ -0,0 +1,133 @@
|
|||
# FastAPI Integration
|
||||
|
||||
## Introduction
|
||||
|
||||
This section includes a complete example showing how to integrate Redis OM with FastAPI.
|
||||
|
||||
Good news: Redis OM was **specifically designed to integrate with FastAPI**!
|
||||
|
||||
## Concepts
|
||||
|
||||
### Every Redis OM Model is also a Pydantic model
|
||||
|
||||
Every Redis OM model is also a Pydantic model, so you can define a model and then pass the model class into any location that FastAPI expects a Pydantic model.
|
||||
|
||||
This means a couple of things:
|
||||
|
||||
1. A Redis OM model can be used for request body validation
|
||||
2. Redis OM models show up in the auto-generated API documentation
|
||||
|
||||
### Cache vs. Data
|
||||
|
||||
Redis works well as either a durable data store or a cache, but the optiomal Redis configuration is often different between these two use cases.
|
||||
|
||||
You almost always want to use a Redis instance tuned for caching when you're caching and a separate Redis instance tuned for data durability for storing application state.
|
||||
|
||||
This example shows how to manage these two uses of Redis within the same application. The app uses a FastAPI caching framework and dedicated caching instance of Redis for caching, and a separate Redis instance tuned for durability for Redis OM models.
|
||||
|
||||
|
||||
## Example app code
|
||||
|
||||
This is a complete example that you can run as-is:
|
||||
|
||||
```python
|
||||
import datetime
|
||||
from typing import Optional
|
||||
|
||||
import aioredis
|
||||
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from starlette.requests import Request
|
||||
from starlette.responses import Response
|
||||
|
||||
from fastapi_cache import FastAPICache
|
||||
from fastapi_cache.backends.redis import RedisBackend
|
||||
from fastapi_cache.decorator import cache
|
||||
|
||||
from pydantic import EmailStr
|
||||
|
||||
from redis_om.model import HashModel, NotFoundError
|
||||
from redis_om.connections import get_redis_connection
|
||||
|
||||
# This Redis instance is tuned for durability.
|
||||
REDIS_DATA_URL = "redis://localhost:6380"
|
||||
|
||||
# This Redis instance is tuned for cache performance.
|
||||
REDIS_CACHE_URL = "redis://localhost:6381"
|
||||
|
||||
|
||||
class Customer(HashModel):
|
||||
first_name: str
|
||||
last_name: str
|
||||
email: EmailStr
|
||||
join_date: datetime.date
|
||||
age: int
|
||||
bio: Optional[str]
|
||||
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
|
||||
@app.post("/customer")
|
||||
async def save_customer(customer: Customer):
|
||||
# We can save the model to Redis by calling `save()`:
|
||||
return customer.save()
|
||||
|
||||
|
||||
@app.get("/customers")
|
||||
async def list_customers(request: Request, response: Response):
|
||||
# To retrieve this customer with its primary key, we use `Customer.get()`:
|
||||
return {"customers": Customer.all_pks()}
|
||||
|
||||
|
||||
@app.get("/customer/{pk}")
|
||||
@cache(expire=10)
|
||||
async def get_customer(pk: str, request: Request, response: Response):
|
||||
# To retrieve this customer with its primary key, we use `Customer.get()`:
|
||||
try:
|
||||
return Customer.get(pk)
|
||||
except NotFoundError:
|
||||
raise HTTPException(status_code=404, detail="Customer not found")
|
||||
|
||||
|
||||
@app.on_event("startup")
|
||||
async def startup():
|
||||
r = aioredis.from_url(REDIS_CACHE_URL, encoding="utf8", decode_responses=True)
|
||||
FastAPICache.init(RedisBackend(r), prefix="fastapi-cache")
|
||||
|
||||
# You can set the Redis OM URL using the REDIS_OM_URL environment
|
||||
# variable, or by manually creating the connection using your model's
|
||||
# Meta object.
|
||||
Customer.Meta.database = get_redis_connection(url=REDIS_DATA_URL, decode_responses=True)
|
||||
```
|
||||
|
||||
## Testing the app
|
||||
|
||||
You should install the app's dependencies first. This app uses Poetry, so you'll want to make sure you have that installed first:
|
||||
|
||||
$ pip install poetry
|
||||
|
||||
Then install the dependencies:
|
||||
|
||||
$ poetry install
|
||||
|
||||
Next, start the server:
|
||||
|
||||
$ poetry run uvicorn --reload main:test
|
||||
|
||||
Then, in another shell, create a customer:
|
||||
|
||||
$ curl -X POST -H 'Content-Length: 0' "http://localhost:8000/customer"
|
||||
$ curl -X POST "http://localhost:8000/customer" -H 'Content-Type: application/json' -d '{"first_name":"Andrew","last_name":"Brookins","email":"a@example.com","age":"38","join_date":"2020
|
||||
-01-02"}'
|
||||
{"pk":"01FM2G8EP38AVMH7PMTAJ123TA","first_name":"Andrew","last_name":"Brookins","email":"a@example.com","join_date":"2020-01-02","age":38,"bio":""}
|
||||
|
||||
Get a copy of the value for "pk" and make another request to get that customer:
|
||||
|
||||
$ curl "http://localhost:8000/customer/01FM2G8EP38AVMH7PMTAJ123TA"
|
||||
{"pk":"01FM2G8EP38AVMH7PMTAJ123TA","first_name":"Andrew","last_name":"Brookins","email":"a@example.com","join_date":"2020-01-02","age":38,"bio":""}
|
||||
|
||||
You can also get a list of all customer PKs:
|
||||
|
||||
$ curl "http://localhost:8000/customers"
|
||||
{"customers":["01FM2G8EP38AVMH7PMTAJ123TA"]}
|
Loading…
Reference in a new issue