This commit is contained in:
Miloslav Ciz 2024-11-16 22:05:36 +01:00
parent b5008748ba
commit 7680730daf
14 changed files with 1877 additions and 1826 deletions

View file

@ -4,7 +4,7 @@ WIP kind of
{ There's most likely a lot of BS, math people pls send me corrections, thank u. ~drummyfish }
Numbers (from Latin *numerus* coming from a Greek word meaning "to distribute") are one of the most elementary [mathematical](math.md) objects, building stones serving most often as quantitative values (that is: telling count, size, length, order etc.), in higher math also used in much more [abstract](abstraction.md) ways which have only distant relationship to traditional counting. Examples of numbers are minus [one](one.md) half, [zero](zero.md), [pi](pi.md) or [i](i.md). Numbers constitute the basis and core of mathematics and as such they sit almost at the [lowest level](low_level.md) of it, i.e. most other things such as algebra, [functions](function.md) and [equations](equation.md) are built on top of numbers or require numbers to even be examined. In modern mathematics numbers themselves aren't on the absolute bottom of the foundations though, they are themselves built on top of [sets](set.md), as set theory is most commonly used as a basis of whole mathematics, however for many purposes this is just a formalism that's of practical interest only to some mathematicians -- on the other hand numbers just cannot be avoided anywhere, by a mathematician or just a common folk. The word *number* may be the first that comes to our mind when we say *mathematics*. The area of [number theory](number_theory.md) is particularly focused on examining numbers (though it's examining almost exclusively integer numbers because these seem to have the deepest pattern related e.g. to divisibility).
Numbers (from Latin *numerus* coming from a Greek word meaning "to distribute") are one of the most elementary [mathematical](math.md) objects, building [stones](rock.md) serving most often as quantitative values (that is: telling count, size, length, order etc.), in higher math also used in much more [abstract](abstraction.md) ways which have only distant relationship to traditional counting. Examples of numbers are minus [one](one.md) half, [zero](zero.md), [pi](pi.md) or [i](i.md). Numbers constitute the basis and core of mathematics and as such they sit almost at the [lowest level](low_level.md) of it, i.e. most other things such as algebra, [functions](function.md) and [equations](equation.md) are built on top of numbers or require numbers to even be examined. In modern mathematics numbers themselves aren't on the absolute bottom of the foundations though, they are themselves built on top of [sets](set.md), as set theory is most commonly used as a basis of whole mathematics, however for many purposes this is just a formalism that's of practical interest only to some mathematicians -- on the other hand numbers just cannot be avoided anywhere, by a mathematician or just a common folk. The word *number* may be the first that comes to our mind when we say *mathematics*. The area of [number theory](number_theory.md) is particularly focused on examining numbers (though it's examining almost exclusively integer numbers because these seem to have the deepest pattern related e.g. to divisibility).
Let's not [confuse](often_confused.md) numbers with digits or figures (numerals) -- a number is a purely abstract entity while digits serve as symbols for numbers so that we can write them down. One number may be written in many ways, using one of many [numeral systems](numeral_system.md) (Roman numerals, tally marks, Arabic numerals of different [bases](base.md) etc.), for example 4 stands for a number than can also be written as IV, four, 8/2, 16:4, 2^2, 4.00 or 0b100. There are also numbers which cannot exactly be captured within our traditional numeral systems, for some of them we have special symbols -- most famous example is of course [pi](pi.md) whose digits we cannot ever completely write down -- and there are even numbers for which we have no symbols at all, ones that are yet not well researched and are only described by equations to which they are the solution. Sure enough, a number by itself isn't too interesting and probably doesn't even make sense, it's only in context, when it's placed in relationship with other numbers (by ordering them, defining operations and properties based on those operations) that patterns and useful attributes emerge.