130 lines
2.7 KiB
Markdown
130 lines
2.7 KiB
Markdown
# RSA
|
|
|
|
TODO
|
|
|
|
generating keys:
|
|
|
|
1. *p := large random prime*
|
|
2. *q := large random prime*
|
|
3. *n := p * q*
|
|
4. *f := (p - 1) * (q - 1)* (this step may differ in other versions)
|
|
5. *e := 65537* (most common, other constants exist)
|
|
6. *d := solve for x: 1 = (x * e) mod f*
|
|
7. *public key := (n,e)*
|
|
8. *private key := d*
|
|
|
|
message encryption:
|
|
|
|
1. *m := message encoded as a number < n*
|
|
2. *encrypted := m^e mod n*
|
|
|
|
message decryption:
|
|
|
|
1. *m := encrypted^d mod n*
|
|
2. *decrypted := decode message from number m*
|
|
|
|
## Code Example
|
|
|
|
Here is a stupidly simple [C](c.md) code demonstrating the algorithm, for simplicity we use laughably small primes, we only consider 4 character string as a message and make other simplifications.
|
|
|
|
```
|
|
#include <stdio.h>
|
|
#define e 65537 // often used constant
|
|
|
|
typedef unsigned long long u64;
|
|
|
|
void generateKeys(u64 prime1, u64 prime2, u64 *privateKey, u64 *publicKey)
|
|
{
|
|
u64 f = (prime1 - 1) * (prime2 - 1);
|
|
|
|
*publicKey = prime1 * prime2;
|
|
*privateKey = 1;
|
|
|
|
while (*privateKey) // brute force solve the equation
|
|
{
|
|
if (((*privateKey) * e) % f == 1)
|
|
break;
|
|
|
|
(*privateKey)++;
|
|
}
|
|
}
|
|
|
|
u64 powerMod(u64 n, u64 power, u64 mod) // helper func, returns n^power % mod
|
|
{
|
|
u64 result = 1;
|
|
|
|
for (int i = 0; i < power; ++i)
|
|
result = (result * n) % mod;
|
|
|
|
return result;
|
|
}
|
|
|
|
u64 encryptNum(u64 n, u64 publicKey)
|
|
{
|
|
return powerMod(n,e,publicKey);
|
|
}
|
|
|
|
u64 decryptNum(u64 n, u64 publicKey, u64 privateKey)
|
|
{
|
|
return powerMod(n,privateKey,publicKey);
|
|
}
|
|
|
|
int main(void)
|
|
{
|
|
u64 priv, pub,
|
|
prime1 = 33461,
|
|
prime2 = 17977;
|
|
|
|
const char *str = "bich"; // we'll only consider 4 char string
|
|
|
|
puts("generating keys, wait...");
|
|
|
|
generateKeys(prime1,prime2,&priv,&pub);
|
|
|
|
printf("prime1 = %llu\nprime2 = %llu\nprivate key = %llu\npublic key = %llu\n",
|
|
prime1,prime2,priv,pub);
|
|
|
|
u64 data = str[0] | (str[1] << 7) | (str[2] << 14) | (str[3] << 21);
|
|
|
|
printf("string to encode: \"%s\"\n",str);
|
|
printf("string as numeric data: %lld\n",data);
|
|
|
|
if (data >= pub)
|
|
{
|
|
puts("Data is too big, choose bigger primes or smaller data.");
|
|
return 1;
|
|
}
|
|
|
|
puts("encrypting...");
|
|
|
|
u64 encrypted = encryptNum(data,pub);
|
|
printf("encrypted: %lld\n",encrypted);
|
|
|
|
puts("decrypting...");
|
|
|
|
data = decryptNum(encrypted,pub,priv);
|
|
printf("decrypted: %lld\n",data);
|
|
|
|
printf("retrieved string: \"%c%c%c%c\"\n",data & 0x7f,(data >> 7) & 0x7f,
|
|
(data >> 14) & 0x7f,(data >> 21) & 0x7f);
|
|
|
|
return 0;
|
|
}
|
|
```
|
|
|
|
The program prints out:
|
|
|
|
```
|
|
generating keys, wait...
|
|
prime1 = 33461
|
|
prime2 = 17977
|
|
private key = 323099873
|
|
public key = 601528397
|
|
string to encode: "bich"
|
|
string as numeric data: 219739362
|
|
encrypting...
|
|
encrypted: 233361060
|
|
decrypting...
|
|
decrypted: 219739362
|
|
retrieved string: "bich"
|
|
``` |