67 lines
12 KiB
Markdown
67 lines
12 KiB
Markdown
# Chess
|
||
|
||
Chess is an old board [game](game.md), perhaps most famous and popular among all board games in history. It is a complete information game that simulates a battle of two armies on a 64x64 board with different battle pieces. Chess has a world-wide competitive community and is considered an intellectual sport but is also a topic of active research (chess is unlikely to be ever solved due to its non-trivial rules combined with enormous state space, Shannon estimated the number of possible games at 10^120) and programming (many chess engines, [AI](ai.md)s and frontends are being actively developed).
|
||
|
||
{ There is a nice black and white indie movie called *Computer Chess* about chess programmers of the 1980s, it's pretty good, very oldschool, starring real programmers and chess players, check it out. ~drummyfish }
|
||
|
||
[Drummyfish](drummyfish.md) has created a suckless/[LRS](lrs.md) chess library [smallchesslib](smallchesslib.md) which includes a simple engine called *smolchess*.
|
||
|
||
**At [LRS](lrs.md) we consider chess to be one of the best games**, if not the very best one, for the following reasons:
|
||
|
||
- It is just a greatly interesting and deep game in which luck plays minimal role.
|
||
- **It is [suckless](suckless.md)**, the rules are very simple, it can be implemented on simple 8bit computers. The game doesn't even require a computer to play and chess masters don't even need a physical board to play (they can completely visualize it in memory). In the end one can in theory just play against himself in his head, achieving ultimate freedom: the only dependency of the game is one's brain, i.e. it becomes a [brain software](brain_software.md). Chess is extremely inexpensive, doesn't discriminate against poor people and will survive even the most extreme technological [collapse](collapse.md).
|
||
- **No one owns chess**, the game is hundreds of years old and many books about it are also already in the [public domain](public_domain.md). It is extremely free.
|
||
- It is a basis for other derived games, for example many different chess variants or chess puzzles which can be considered a "singleplayer chess game".
|
||
- It is a source of many interesting [mathematical](math.md) and programming challenges.
|
||
|
||
## Chess in General
|
||
|
||
Chess evolved from ancient board games in India in about 6th century. Nowadays the game is internationally governed by **FIDE** which has taken the role of defining the rules: FIDE rules are considered to be the standard chess rules. FIDE also organizes tournaments, promotes the game and keeps a list of registered player whose performance it rates with so called Elo system – based on the performance it also grants titles such as **Grandmaster** (GM, strongest), **Internation Master** (IM, second strongest) or **Candidate Master** (CM).
|
||
|
||
**[Elo](elo.md) rating** is a mathematical system of numerically rating the performance of players (it is used in many sports, not just chess). Given two players with Elo rating it is possible to compute the probability of the game's outcome (e.g. white has 70% chance of winning etc.). The FIDE set the parameters so that the rating is roughly this: < 1000: beginner, 1000-2000: intermediate, 2000-3000: master. More advanced systems have also been created, namely the Glicko system.
|
||
|
||
The rules of chess are quite simple and can be found anywhere on the Internet. In short, the game is played on a 64x64 board by two players: one with **white** pieces, one with **black**. Each piece has a way of moving and capturing (eliminating) enemy pieces, for example bishops move diagonally while pawns move one square forward and take diagonally. The goal is to **checkmate** the opponent's king, i.e. make the king attacked by a piece while giving him no way to escape this attack. There are also lesser known rules that noobs often miss and ignore, e.g. so called en-passant or the 50 move rule that declares a draw if there has been no significant move for 50 moves.
|
||
|
||
At the competitive level **clock** (so called *time control*) is used to give each player a limited time for making moves: with unlimited move time games would be painfully long and more a test of patience than skill. Clock can also nicely help balance unequal opponent by giving the stronger player less time to move. Based on the amount of time to move there exist several formats, most notably **correspondence** (slowest, days for a move), **classical** (slow, hours per game), **rapid** (faster, tens of minutes per game), **blitz** (fast, a few seconds per move) and **bullet** (fastest, units of seconds per move).
|
||
|
||
Currently the best player in the world is pretty clearly Magnus Carlsen from Norway with Elo rating 2800+.
|
||
|
||
During covid chess has experienced boom among normies and [YouTube](youtube.md) chess channels have gained considerable popularity.
|
||
|
||
## Chess and Computers
|
||
|
||
{[This](https://www.youtube.com/watch?v=DpXy041BIlA) is an absolutely amazing video about weird chess algorithms :) ~drummyfish}
|
||
|
||
Chess have a very strong relationship with computers, computers help people play chess, train their skills but also analyze positions, perform research about chess, create and search game databases and find new play styles. The game also provides a nice framework for machine learning.
|
||
|
||
There is a great online Wiki focused on programming chess engines: https://www.chessprogramming.org.
|
||
|
||
Chess software is usually separated to **libraries**, **chess engines** and **frontends** (or boards). Chess engine is typically a [CLI](cli.md) program capable of playing chess but also doing other things such as evaluating arbitrary position, hinting best moves, saving and loading games etc. Frontends on the other hand are [GUI](gui.md) programs that help people interact with the underlying engine.
|
||
|
||
For communication between different engines and frontends there exist standards such as XBoard (engine protocol), UCI (another engine protocol), FEN (way of encoding a position as a string), PGN (way of encoding games as strings) etc.
|
||
|
||
Computers have already surpassed the best humans in their playing strength (we can't exactly compute an engine's Elo as it depends on hardware used, but generally the strongest would rate high above 3000 FIDE). As of 2021 the strongest chess engine is considered to be the [FOSS](foss.md) engine [Stockfish](stockfish.md), with other strong engines being e.g. Leela Chess Zero (also FOSS) or AlphaZero ([proprietary](proprietary.md), by [Google](google.md)). [GNU Chess](gnu_chess.md) is a reasonably strong [free software](free_software.md) engine by [GNU](gnu.md). There are world championships for chess engines such as the *Top Chess Engine Championship* or *World Computer Chess Championship*. [CCRL](https://ccrl.chessdom.com/ccrl/4040/) is a list of chess engines along with their Elo ratings. Despite the immense strength of modern engines, there are still very specific situation in which humans beat the computer (shown e.g. in [this](https://www.youtube.com/watch?v=R9IZWgArWUE) video).
|
||
|
||
The first chess computer that beat the world champion (at the time Gary Kasparov) was famously [Deep Blue](deep_blue.md) in 1997. [Alan Turing](turing.md) himself has written a chess playing algorithm but at his time there were no computers to run it, so he executed it by hand -- nowadays the algorithm has been implemented on computers (there are bots playing this algorithm e.g. on lichess).
|
||
|
||
For online chess there exist many servers such as https://chess.com or https://chess24.com, but for us the most important is https://lichess.org which is gratis and uses [FOSS](foss.md) (it also allows users to run bots under special accounts which is an amazing way of testing engines against people and other engines). These servers rate players with Elo/Glicko, allow them to play with each other or against computer, solve puzzles, analyze games, play chess variants, explore opening databases etc.
|
||
|
||
Playing strength is not the only possible measure of chess engine quality, of course -- for example there are people who try to make the **smallest chess programs** (see [countercomplex](countercomplex.md) and [golfing](golf.md)). As of 2022 the leading programmer of smallest chess programs seems to be Óscar Toledo G. (https://nanochess.org/chess.html). Unfortunately his programs are [proprietary](proprietary.md), even though their source code is public. The programs include Toledo Atomchess (392 [x86](x86.md) instructions), Toledo Nanochess (world's smallest [C](c.md) chess program, 1257 non-blank C characters) and Toledo Javascript chess (world's smallest [Javascript](javascript.md) chess program). He won the [IOCCC](ioccc.md). Another small chess program is micro-Max by H. G. Muller (https://home.hccnet.nl/h.g.muller/max-src2.html, 1433 C characters, Toledo claims it is weaker than his program).
|
||
|
||
{ Nanochess is actually pretty strong, in my testing it easily beat [smallchesslib](smallchesslib.md) :') ~drummyfish }
|
||
|
||
## Programming Chess
|
||
|
||
Programming chess is a [fun](fun.md) and enriching experience and is therefore recommended as a good exercise. There is nothing more satisfying than writing a custom chess engine and then watching it play on its own.
|
||
|
||
The core of chess programming is writing the [AI](ai.md), everything else, i.e. implementing the rules, communication protocols etc., is pretty straightforward (but still a good programming exercise). Nevertheless one has to pay a great attention to eliminating as many bugs as possible; really, the importance of writing automatic tests can't be stressed enough as debugging the AI will be hard enough and can become unmanageable with small bugs creeping in.
|
||
|
||
The AI itself works in almost all cases on the same principle: firstly we implement so called static **evaluation function** -- a function that takes a chess position and outputs its evaluation number which say how good the position is for white vs black (positive number favoring white, negative black). This function considers a number of factors such as total material of both players, pawn structure, king safety, piece mobility and so on (in new engines this function is often a learned [neural network](neural_network.md), but it may very well be written by hand). Secondly we implement a **search** algorithm that recursively searches the game tree and looks for a move that will lead to the best result, i.e. to position for which the evaluation function gives the best value. This basic principle, especially the search part, gets very complex as there are many possible weaknesses and optimizations.
|
||
|
||
Exhaustively searching the tree to great depths is not possible due to astronomical numbers of possible move combinations, so the engine has to limit the depth quite greatly. Normally it will search all moves to a small depth (e.g. 2 or 3 half moves or *plys*) and then extend the search for interesting moves such as exchanges or checks. Maybe the greatest danger of searching algorithms is so called **horizon effect** which has to be addressed somehow (e.g. by detecting quiet positions, so called *quiescence*). If not addressed, the horizon effect will make an engine misevaluate certain moves by stopping the evaluation at certain depth even if the played out situation would continue and lead to a vastly different result (imagine e.g. a queen taking a pawn which is guarded by another pawn; if the engine stops evaluating after the pawn take, it will think it's a won pawn, when in fact it's a lost queen). There are also many techniques for reducing the number of searched tree nodes and speeding up the search, for example pruning methods such as **alpha-beta** (which subsequently works best with correctly ordering moves to search), or **transposition tables** (remembering already evaluated position so that they don't have to be evaluated again when encountered by a different path in the tree).
|
||
|
||
Many other aspects come into the AI design such as opening books (databases of best opening moves), endgame tablebases (databases of winning moves in simple endgames), heuristics in search, clock management, pondering (thinking on opponent's move), learning from played games etc. For details see the above linked chess programming wiki.
|
||
|
||
## Rules
|
||
|
||
TODO |