redis-om-python/docs/validation.md
Chayim bc2199f2d4
Spellcheck (#302)
* spelling, take1

* some spelling fixes

* one more
2022-07-11 11:03:16 +03:00

150 lines
3.6 KiB
Markdown

# Validation
Redis OM uses [Pydantic][pydantic-url] behind the scenes to validate data at runtime, based on the model's type annotations.
## Basic Type Validation
Validation works for basic type annotations like `str`. Thus, given the following model:
```python
import datetime
from typing import Optional
from pydantic import EmailStr
from redis_om import HashModel
class Customer(HashModel):
first_name: str
last_name: str
email: EmailStr
join_date: datetime.date
age: int
bio: Optional[str]
```
... Redis OM will ensure that `first_name` is always a string.
But every Redis OM model is also a Pydantic model, so you can use existing Pydantic validators like `EmailStr`, `Pattern`, and many more for complex validation!
## Complex Validation
Let's see what happens if we try to create a `Customer` object with an invalid email address.
```python
import datetime
from typing import Optional
from pydantic import EmailStr, ValidationError
from redis_om import HashModel
class Customer(HashModel):
first_name: str
last_name: str
email: EmailStr
join_date: datetime.date
age: int
bio: Optional[str]
# We'll get a validation error if we try to use an invalid email address!
try:
Customer(
first_name="Andrew",
last_name="Brookins",
email="Not an email address!",
join_date=datetime.date.today(),
age=38,
bio="Python developer, works at Redis, Inc."
)
except ValidationError as e:
print(e)
"""
pydantic.error_wrappers.ValidationError: 1 validation error for Customer
email
value is not a valid email address (type=value_error.email)
"""
```
As you can see, creating the `Customer` object generated the following error:
```
Traceback:
pydantic.error_wrappers.ValidationError: 1 validation error for Customer
email
value is not a valid email address (type=value_error.email)
```
We'll also get a validation error if we change a field on a model instance to an invalid value and then try to save the model:
```python
import datetime
from typing import Optional
from pydantic import EmailStr, ValidationError
from redis_om import HashModel
class Customer(HashModel):
first_name: str
last_name: str
email: EmailStr
join_date: datetime.date
age: int
bio: Optional[str]
andrew = Customer(
first_name="Andrew",
last_name="Brookins",
email="andrew.brookins@example.com",
join_date=datetime.date.today(),
age=38,
bio="Python developer, works at Redis, Inc."
)
andrew.email = "Not valid"
try:
andrew.save()
except ValidationError as e:
print(e)
"""
pydantic.error_wrappers.ValidationError: 1 validation error for Customer
email
value is not a valid email address (type=value_error.email)
"""
```
Once again, we get the validation error:
```
Traceback:
pydantic.error_wrappers.ValidationError: 1 validation error for Customer
email
value is not a valid email address (type=value_error.email)
```
## Constrained Values
If you want to use any of the constraints.
Pydantic includes many type annotations to introduce constraints to your model field values.
The concept of "constraints" includes quite a few possibilities:
* Strings that are always lowercase
* Strings that must match a regular expression
* Integers within a range
* Integers that are a specific multiple
* And many more...
All of these constraint types work with Redis OM models. Read the [Pydantic documentation on constrained types](https://pydantic-docs.helpmanual.io/usage/types/#constrained-types) to learn more.
[pydantic-url]: https://github.com/samuelcolvin/pydantic